
Luiz Marques Afonso

Communicative Dimensions of Application
Programming Interfaces (APIs)

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em In-
formática of the Departamento de Informática, PUC-Rio as par-
tial fulfillment of the requirements for the degree of Doutor em
Informática.

Advisor: Prof. Clarisse Sieckenius de Souza

Rio de Janeiro
April 2015

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Luiz Marques Afonso

Communicative Dimensions of Application
Programming Interfaces (APIs)

Thesis presented to the Programa de Pós-Graduação em In-
formática of the Departamento de Informática do Centro Técnico
Cient́ıfico da PUC-Rio, as partial fulfillment of the requirements
for the degree of Doutor.

Prof. Clarisse Sieckenius de Souza
Advisor

Departamento de Informática – PUC-Rio

Prof. Roberto da Silva Bigonha
UFMG

Prof. Renato Fontoura de Gusmão Cerqueira
IBM Research – Brazil

Prof. Alexandre Rademaker
FGV

Prof. Roberto Ierusalimschy
Departamento de Informática – PUC-Rio

Prof. Noemi de La Rocque Rodriguez
Departamento de Informática – PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico – PUC-Rio

Rio de Janeiro, April 6th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

All rights reserved.

Luiz Marques Afonso

Luiz Marques Afonso received his bachelor degree in Infor-
matics from the Federal University of Rio de Janeiro (UFRJ)
in 1996, and the MSc degree in Informatics from PUC-Rio in
2008. He is a software developer with many years of experi-
ence in programming, design, and software security. He works
for 3Elos, an IT company specialized in Information Security,
where he is also a partner.

Bibliographic Data

Afonso, Luiz Marques

Communicative Dimensions of Application Programming
Interfaces (APIs) / Luiz Marques Afonso ; advisor: Clarisse
Sieckenius de Souza. — 2015.

153 f. : il. (color.); 30 cm

Tese (doutorado)-Pontif́ıcia Universidade Católica do Rio
de Janeiro, Departamento de Informática, 2015.

Inclui bibliografia

1. Informática – Teses. 2. Design e avaliação de interfaces
de programação. 3. Engenharia Semiótica. I. de Souza, Cla-
risse Sieckenius. II. Pontif́ıcia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

To Elen and Maria.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Acknowledgments

First and foremost, I am grateful to my wife, Elen, for the love and

patience during all these years of hard work. Many thanks to my family,

especially my mother, for the love, support and encouragement.

I would like to thank my thesis advisor, Prof. Clarisse Sieckenius de

Souza, for the dedication, insight, patience and for the always sharp comments,

suggestions and questions about my work. I am also grateful to her for willing

to advise me when I was already in the course of my PhD years. It has been a

privilege and a pleasure to work closely with such an awarded researcher and,

as the PhD years showed me, a remarkable person.

I am grateful to Prof. Renato Cerqueira for his special collaboration to

this work and for advising me in the first half of the course. I also thank him for

inviting me to apply for the PhD at PUC-Rio, after receiving my MSc degree

in 2008, when he was my advisor.

Special thanks to my friends at 3Elos, Marcelo Duarte and Marcelo

Pettengill, for supporting my academic endeavor.

I would also like to thank the people from the Semiotic Engineering Rese-

arch Group (SERG), for the many discussions over the course of our workshops

and meetings: Bruno Chagas, Cátia Ferreira, Cleyton Slaviero, Eduardo Tol-

masquim, Ingrid Monteiro, João Bastos, Luciana Salgado, Marcelle Mota and

Priscilla Abreu. Special thanks to Carla Leitão for her precise methodological

suggestions and comments, and also to Juliana Ferreira and Rafael Brandão,

for the close collaboration.

I would also like to thank PUC-Rio and CAPES for the partial financial

support.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Abstract

Afonso, Luiz Marques; de Souza, Clarisse Sieckenius (Advisor). Com-
municative Dimensions of Application Programming Interfaces
(APIs). Rio de Janeiro, 2015. 153p. Doctoral Thesis — Departamento
de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Application programming interfaces (APIs) have a central role in soft-

ware development, as programmers have to deal with a number of routines

and services that range from operating system libraries to large application

frameworks. In order to effectively use APIs, programmers should have good

comprehension of these software artifacts, making sense of the underlying abs-

tractions and concepts by developing an interpretation that is compatible with

the designer’s intent. Due to the complexity of today’s systems and program-

ming environments, learning and using an API properly can be non-trivial task

to many programmers. Traditionally, studies on API design have been deve-

loped from a usability standpoint. These studies have provided evidence that

bad APIs may affect programmer’s productivity and software quality, offering

valuable insights to improve the design of new and existing APIs. This thesis

proposes a novel approach to investigate and discuss API design, based on a

communication perspective under the theoretical guidance of Semiotic Engine-

ering. From this perspective, an API can be viewed as a communication process

that takes place between designer and programmer, in which the former enco-

des a message to the latter about how to communicate back with the system

and use the artifact’s features, according to its design vision. This approach

provides an account of API design space that highlights the pragmatic and

cognitive aspects of human communication mediated by this type of software

artifact. By means of the collection and qualitative analysis of empirical data

from bug repositories and other sources, this research work contributes to a

deeper comprehension of the subject, providing an epistemic framework that

intends to support the analysis, discussion and evaluation of API design.

Keywords
Application programming interface design and evaluation. Semiotic

Engineering.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Resumo

Afonso, Luiz Marques; de Souza, Clarisse Sieckenius. Dimensões Co-
municativas de Interfaces de Programação (APIs). Rio de Janeiro,
2015. 153p. Tese de Doutorado — Departamento de Informática, Pon-
tif́ıcia Universidade Católica do Rio de Janeiro.

Interfaces de programação, ou application programming interfaces (APIs)

possuem um papel chave no desenvolvimento de software, uma vez que os pro-

gramadores precisam lidar com diversas rotinas e serviços, desde bibliotecas

de sistemas operacionais a frameworks de aplicação complexos. Para o uso

efetivo de uma API, programadores devem ter uma boa compreensão do arte-

fato de software, suas abstrações e conceitos subjacentes, desenvolvendo uma

interpretação compat́ıvel com a intenção do designer. Devido à complexidade

dos sistemas e ambientes de programação atuais, aprender e usar adequada-

mente uma API pode ser uma tarefa não trivial para muitos programadores.

Tradicionalmente, estudos sobre o design de APIs foram desenvolvidos sob

uma perspectiva de usabilidade. Esses estudos geraram evidências de que o

projeto inadequado de uma API pode ter impacto sobre a produtividade de

um programador e sobre a qualidade do software, e colaboraram para incre-

mentar o design de APIs novas ou já existentes. Esta tese propõe uma nova

abordagem para investigar e discutir design de APIs, baseada numa perspec-

tiva de comunicação sob a orientação teórica da Engenharia Semiótica. Nessa

perspectiva, uma API pode ser vista como um processo de comunicação que

ocorre entre o designer e o programador, no qual o primeiro codifica uma

mensagem para o segundo sobre como ele deve se comunicar com o sistema e

usar as suas funcionalidades, de acordo com a visão de design. Essa aborda-

gem provê uma caracterização do espaço de design de APIs que enfatiza os

aspectos pragmáticos e cognitivos da comunicação humana mediada por este

tipo de artefato de software. Através da coleta e da análise qualitativa de da-

dos emṕıricos de repositórios de bugs e outras fontes, essa pesquisa contribui

para uma compreensão mais ampla sobre o tema, provendo um framework

epistêmico que pode ser usado no apoio à análise, discussão e avaliação do

design de APIs.

Palavras–chave
Design e avaliação de interfaces de programação. Engenharia Semiótica.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Contents

1 Introduction 12
1.1 Context 13
1.2 Motivation 15
1.3 Research Goal 19
1.4 Approach 21
1.5 Results 25
1.6 Outline 25

2 Related Work 26
2.1 API and Language Evaluation 26
2.2 API and Language Design 30
2.3 API learning and documentation 31
2.4 Programming, Communication and Semiotics 32
2.5 Other studies 33
2.6 Considerations about related work 34

3 Theoretical Foundations 35
3.1 Semiotic Engineering 35
3.2 Cognitive Dimensions of Notations framework 51

4 Methodology and Empirical Studies 57
4.1 Research approach 57
4.2 Research Design 58
4.3 Empirical studies 61
4.4 Considerations about the research 71

5 Analysis of Results and Findings 73
5.1 Considerations about the ‘active programmer’ and abductive reasoning 73
5.2 Communicative dimensions and epistemic tools for API design and

analysis 75
5.3 Qualitative findings 98

6 Final Discussions and Conclusion 127
6.1 Revisiting the “most dangerous code in the world” 127
6.2 Metacommunication as a ‘pragmatic contract’ 131
6.3 Contributions 134
6.4 Limitations 139
6.5 Future work 139
6.6 Final considerations 140

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

List of Figures

1.1 Interactions between programmers 19
1.2 Research strategy overview 24

3.1 Abductive reasoning 37
3.2 Jakobson’s model of the communication space 37

4.1 Qualitative data analysis procedures (Creswell) 60
4.2 Overview of research procedures 61
4.3 Example of PHP bug report 63
4.4 Example of Java bug report 64
4.5 Example of dynamic data visualization 71

5.1 User’s interpretation of API language 75
5.2 API metacommunication template 79
5.3 API metacommunication elements 85
5.4 API metacommunication effects 90
5.5 Cognitive dimensions to characterize API metacommunication effects 93
5.6 API metacommunication failures 95
5.7 Bugs per communication failure 115
5.8 Bugs per metacommunication template component 117
5.9 Bugs per effect 118
5.10 Bugs per cognitive dimension 120
5.11 Bugs per template component and effect 122
5.12 Bugs per template component and cognitive dimension 123
5.13 Bugs per template component and failure type 124
5.14 Bugs per template component, failure, effect and CDN (top 3) 125

6.1 Intent as a pragmatic contract 133

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

List of Tables

3.1 Complete failures 45
3.2 Partial failures 45
3.3 Temporary failures: (1) user’s semiosis may be momentarily halted 46
3.4 Temporary failures: (2) user realizes that she must reformulate

illocution 47
3.5 Temporary failures: (3) user studies the designer’s deputy’s illocution 48
3.6 Cognitive dimensions of notations 52

4.1 Patterns of API knowledge type 67

5.1 Metacommunication template components 77

6.1 Classification of contract levels 132

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Any fool can write code that a computer
can understand. Good programmers write code
that humans can understand.

Martin Fowler, Refactoring: Improving the Design of Existing Code.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

1
Introduction

Abstraction is a key concept in Computer Science (1, 2), especially in

the context of software construction and use. It is a cognitive resource that

allows us to concentrate on the core properties of a complex object or concept,

simplifying things by removing excessive details. Most software systems are

composed by a large number of layered abstractions, and current applications

contain highly complex and sophisticated abstractions. However, in the lowest

level, they are all encoded in a binary representation of simple, executable

steps to be interpreted by a computer.

Despite being executed by a machine, software has its creation and use

processes deeply based on human interpretation, since most software is written

by humans and for humans. The construction of a software artifact implies a

set of design intentions that envision (at least part of) the users’ expectations,

goals, needs and limitations. Since each user is unique, the meanings extracted

from the abstractions contained in the artifact’s representation may show great

diversity. As such, the design of a software artifact should effectively commu-

nicate these underlying intentions in order to conduct the users’ interpretation

process in the direction of a compatible mental model.

Programmers belong to a specific class of users, which deal with a partic-

ular type of software artifacts (compilers, interpreters, libraries, components,

etc.). Their goal is to use these artifacts to construct other pieces of software.

However, the ‘general problem’ also applies to this more specific context: pro-

grammers should have a good comprehension of the underlying abstractions

contained in the design of these artifacts, and be able to articulate them in

order to construct their own sets of abstractions.

Therefore, human aspects should be frequently addressed by research

work comprehending software construction, its related tools and processes.

However, a significant part of scholarly studies in Software Engineering and

Programming Languages are completely dissociated from this subject (3).

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 13

1.1
Context

Reuse is a common technique used by software engineers to speed

development time through the use of preexisting software modules. It may

also help to reduce the number of defects by using stable and tested artifacts,

especially if we consider the growing complexity of today’s systems. In general,

these modules can be used via its interfaces, which allow other pieces of

software to call the available operations and create new functionalities on

top of the existing ones. These interfaces are generally known as application

programming interfaces, or APIs.

In this text, we refer to an API as any software interface that provides

a set of semantically related operations and data, usually associated with

a specific domain. Software components, modules, libraries and frameworks

usually provide APIs that expose services to be used by other software

elements. This definition is similar to the one adopted by de Souza et al.

(4) in their work regarding the study of APIs in the context of cooperative

work.

APIs are the ‘window’ that exposes the services provided by software

components, modules, libraries and other types of routines. Currently, they

play a central role in the programming scenario, since most popular languages

provide an extensive library of data structures and algorithms to professional

users. As such, it is not usual to write a program ‘from scratch’ anymore,

even a short one. A programmer’s job is, to a large extent, to find adequate

modules, components or functions that provide the required functionalities

and to combine them appropriately in order to accomplish her task. Also, the

ubiquity of Web applications, interoperating in different forms like mashups,

blogs, social networks, services, and so on, takes the use of APIs to a much

higher number of client users.

Every seasoned programmer has probably faced difficulties when trying

to learn how to use a new software module interface, accompanied by a feeling

that ‘it could have been easier’. Complex APIs may discourage their adoption,

since the effort to use it effectively may overcome the benefits. Also, badly

designed APIs may hinder programmers’ comprehension, leading to all sorts

of defects due to misunderstandings. Henning (5) provides an example of how

an overly complex API may have a severe impact on its success. In another

work (6), the same author emphasizes that the importance of API design is

growing “not only because we are designing more APIs, but also because these

APIs tend to provide access to much richer and more complex functionality”.

He also claims that “good APIs are hard”, and “bad APIs are easy”.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 14

Designers encode their intention behind an API by means of its lexical,

syntactical and semantic characteristics, as well as by its runtime behavior

and documentation. Programmers need to interpret the concepts underlying

the interface design in order to use them effectively. In this process, they

construct their own meanings regarding the artifact’s features, trying to grasp

the designer’s ‘message’. From a human-centric perspective, this can be viewed

as a communication process taking place between these parties (designer and

programmer), mediated by the software artifacts involved.

The learning and interpretation processes commonly associated with the

use of a new API may impose a considerable amount of cognitive load on the

programmer, depending on the abstractions involved and on the design of the

artifacts provided. The higher this load is, the higher is the intellectual effort

needed, which may increase the error-proneness of programming tasks. The

variety of notations involved in the representation of an API and its resources

may also influence this cognitive process of learning and using an API and its

associated language.

In this context, the design and use of an API are strongly influenced

by the characteristics of the underlying programming language. From a design

perspective, the programming language determines the expressiveness available

for the designer to choose identifiers, types, parameters, returns, exceptions,

and so on. The semantics of the language is also important here, as it

defines how the chosen representation will behave at runtime, linking design

intent with actual results. From the user’s side, the language’s notation and

the choices made by the designer may influence the user’s interpretation of

the intent behind the artifact, positively or not. The programming culture

associated with the language and its community of programmers should also

be taken into consideration when analyzing the interpretation process of the

design intent behind an API.

There are various resources concerning expert knowledge and guidelines

to help the design of an API, e.g. (7, 8, 9). However, each API is unique,

having its own particular characteristics and goals. There can be subtleties in

the design process that make some decisions critical to its completeness and

flexibility. The work by Ierusalimschy et al. (10) provides interesting insights

about how the design of the API for embedding Lua code in C programs

influenced the design of the Lua language, and vice-versa.

There is a growing demand for software for all kinds of purposes, ranging

from large enterprise systems to simple applications to automate a single task.

To keep up with this demand, a larger community of programmers is being

formed by both professional and end user developers. The increasing number of

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 15

non-professional programmers add a different perspective to the discussion of

API design, since they have less (or no) formal education in Computer Science,

and less programming background. However, they have problems to solve and

tasks to automate, turning them into users of programming languages and

API’s. Therefore, the characteristics of the intended audience should be taken

into account when designing a programming language and its API’s.

In the next section, other aspects in the context of language and API

design are discussed in order to provide arguments that motivate this research

work.

1.2
Motivation

The study of human aspects related to programming has a long tradition

in the research community. According to Myers and Ko (11), in the 1980’s,

there was a “significant amount of work” under different names like Psychology

of Programming, Software Psychology, and Empirical Studies of Programming.

Despite being less frequently found in the 1990’s, these types of research studies

restored their importance among academics in the 2000’s, and are now a more

popular theme in mainstream conferences. More recently, some researchers

have explicitly argued in favor of a stronger emphasis on human factors in

research studies related to Software Engineering and Programming Languages

(12, 3).

Under the influence of this growing importance of human aspects of

programming, many topics related to API design and evaluation have been

extensively studied in the past decade (13). Some of these studies have been

funded by software companies that publish APIs to a large client base, e.g.

(14, 7). Their concern originates from the fact that getting a good API design

before publishing is mandatory, because post-release fixes are costly and may

break legacy code.

Many studies in API design have been developed under a usability

or learning context, with a strong emphasis on the programmer side, e.g.

(15, 16, 17, 18, 19). Despite the programmer’s importance as being the end

user of software interfaces, the role of the designer should also be considered in

the scope of studies about effective API design. The designer is responsible for

the choices that represent the intention behind the artifact implementation,

being an active participant in this communication process.

In an interesting study(17), Robillard and Deline report qualitative find-

ings regarding the most significant API learning obstacles, from the perspective

of professional developers. Their study reported inadequate API documenta-

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 16

tion as the most severe obstacle faced by developers when learning a new API.

From this conclusion, the authors list the main implications derived from

their analysis of interviews with developers, focusing on API documentation

aspects. Among these implications, they argue that intent documentation

should be provided when correct usage is not evident, and that small examples

showing API usage patterns are more useful than ‘single-call’ examples.

Examples are also useful to illustrate best-practices regarding the artifact’s

usage. However, they can also hinder user’s comprehension, when there is a

gap between the abstraction provided by code examples and the usage context

required by the programmer. In addition, they state that matching scenarios to

API elements are considered helpful, as they may describe more complex API

structures and how they fit into the big picture. Finally, they emphasize the

relevance of explicit documentation about performance, error handling and

triggering, and all sorts of specific API behavior, corner cases and relevant

internal aspects of the implementation.

Still in the context of Robillard and Deline’s findings, the authors

state that some developers “look for a coherent, linear presentation of the

documentation”, because “fragmented collections of hyperlinked articles can

be overwhelming”. Most implications of this study reveal the importance of

effective communication between API designers and programmers, especially

when developing abstractions and concepts contained in a software component.

Documentation is only the most obvious element of this communication, but

the pragmatic conditions of software reuse may involve a more complex set of

communicative and cognitive factors that influence this interaction.

When developing software, a programmer should have a good mental

model of the software artifacts being used to compose the solution to a certain

task. Without a good understanding of these abstractions, a programmer can

introduce subtle errors in the code that will only appear later in the software

life cycle. In his PhD thesis (20) about common software defect causes and

characteristics, Hovemeyer claims that “API misuse is the single most prevalent

cause” of the bug patterns detected. Despite focusing on the Java language,

this work is a good example of how API design may have a strong impact on

software quality.

In order to illustrate how API design may hinder programmer compre-

hension and lead to severe bugs, we refer to a short but compelling example

of bugs caused by API misunderstandings. It is based on a study of con-

crete problems in the use of Secure Sockets Layer (SSL) libraries, focusing on

non-browser software dealing with digital certificates and security. The next

subsection presents this example in more detail.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 17

1.2.1
“The most dangerous code in the world”

In their work (21), Georgiev et al. presented examples of non-browser

applications that use SSL libraries insecurely. One of the problems pointed

by the authors is that some applications do not validate adequately the

server’s digital certificate when establishing an SSL connection, making them

vulnerable to ‘man-in-the-middle’ attacks. This means that an attacker may

successfully intercept the communication between client and server, by faking

the server’s identity. Some of the examples presented are related to security-

sensitive operations like, for instance, on line payment.

According to the authors, “The root cause of most of these vulnerabilities

is the terrible design of the APIs to the underlying SSL libraries. (...) As

a consequence, developers often use SSL APIs incorrectly, misinterpreting

and misunderstanding their manifold parameters, options, side effects, and

return values”. From this description, one possible research question is: what

characteristics of these APIs may have determined the high rate of security

bugs found in their usage ?

The study mentions problems identified in many software packages using

SSL functions in different programming languages, like Java and PHP. This

section focuses on one of these libraries as an illustrative example, namely the

PHP Curl extension1. This module is a PHP wrapper of libcurl2, a widely used

C library that offers URL-based data transfer facilities.

The vulnerabilities caused by the misuse of the PHP Curl API are related

to a specific characteristic of its design and implementation. Before executing

a transfer operation from a server URL, users may have to set a number of

configuration options that define the library’s behavior. For example, when

connecting to a server using an SSL-based protocol (e.g. HTTPS), the server

must present a digital certificate to the client. This allows the client to verify

the server’s identity, if the server’s certificate has been issued by a certification

authority trusted by the client.

The basics of operations with the PHP Curl API involves three steps:

initialization, configuration and execution of the data transfer. The config-

uration step consists of calling a generic function (curl setopt) that handles

more than a hundred options. The need to set the various options depends on

the operation being attempted. For instance, when dealing with an SSL-based

connections during development, it is common to ‘relax’ the library’s default

behavior, in order to accept connections to servers presenting untrusted cer-

1http://php.net/manual/en/book.curl.php
2http://curl.haxx.se/libcurl/

http://php.net/manual/en/book.curl.php
http://curl.haxx.se/libcurl/
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 18

tificates. The code in listing 1.1 illustrates this situation, by turning off the

CURLOPT SSL VERIFYPEER option and forcing the client to accept any

certificate presented by the server.

Listing 1.1: Example of insecure PHP Curl code

$ch = cur l in i t (” https : // l o c a l h o s t ”) ;

curl setopt ($ch ,CURLOPT SSL VERIFYPEER, fa l se) ;

i f (curl exec ($ch)) echo ”Request OK” ;

else echo ” Error : ” . curl error ($ch) ;

curl close () ;

By turning off CURLOPT SSL VERIFYPEER, the programmer disables

the verification of server certificates, rendering the code vulnerable to man-

in-the-middle attacks. This configuration setting has a close relationship to

another one: CURLOPT SSL VERIFYHOST. It controls how the client checks

the host name specification in the server’s certificate against the host name

used in the connection. This means that this second option only makes sense

when the first one is enabled.

Although the CURLOPT SSL VERIFYPEER setting has boolean

semantics (accepts true or false), the second setting (CURL-

OPT SSL VERIFYHOST) expects an integer value, ranging between 0

and 2. The most secure option is 2 (the default), which means full server

certificate check. However, it is quite easy to find code excerpts in the Web

where this option is set to 1, which is not the most secure option. Probably,

this happens because programmers infer that it also has boolean semantics,

by making an analogy with the first setting.

This “perversely bad” (21) interface has a side effect related to this

inconsistency that may really impact its usability: as the PHP language is

weakly typed, curl setopt() accepts any type as the value to set the option. So,

the programmer that calls the function to set CURLOPT SSL VERIFYHOST

with the boolean value true is, in fact, having this value automatically

converted to the integer value 1, which is not the most secure choice (the

default is 2, full security check).

An interesting fact about this case study is its high incidence. A quick

Web search returns many examples of vulnerable code snippets, like bug re-

ports3, open source code4, blogs5, and user comments in PHP documentation6.

3https://support.zabbix.com/browse/ZBX-5924
4http://code.google.com/p/a-paypal-express-class/source/browse/trunk/

Paypal.class.php?spec=svn2&r=2
5http://icfun.blogspot.com.br/2008/04/php-curl-to-fetch-html-from-https.

html
6http://www.php.net/manual/en/function.curl-setopt.php

https://support.zabbix.com/browse/ZBX-5924
http://code.google.com/p/a-paypal-express-class/source/browse/trunk/Paypal.class.php?spec=svn2&r=2
http://code.google.com/p/a-paypal-express-class/source/browse/trunk/Paypal.class.php?spec=svn2&r=2
http://icfun.blogspot.com.br/2008/04/php-curl-to-fetch-html-from-https.html
http://icfun.blogspot.com.br/2008/04/php-curl-to-fetch-html-from-https.html
http://www.php.net/manual/en/function.curl-setopt.php
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 19

This issue of the PHP Curl API is a short but representative example of

the relevance of effectively communicating design intent behind a programming

artifact. It also shows that dealing with this type of inconsistencies and bad

design choices may have a cognitive impact on programmers, possibly leading

to coding errors or misunderstandings. Motivated by this type of mismatch

between API design and the pragmatic conditions of programming, the next

section presents the main objectives for this research work.

1.3
Research Goal

The creation and use of programming artifacts comprehend a series of

‘interactions’ between programmers, at different layers. From system-level to

end user programming, software modules provide new abstractions on top

of existing ones, allowing other programmers to call these services through

their interfaces. Figure 1.1 shows some possible instances of these relationships

between programmers.

Figure 1.1: Interactions between programmers

In these interactions, software interfaces mediate a communication pro-

cess between designer (programmer that creates the API) and user (program-

mer that uses the API). When this process is not effective, there can be break-

downs with different outcomes. For instance, the programmer may develop a

wrong mental model of the high-level concepts behind an API’s design. This

can possibly introduce semantic defects in the code, since the programmer

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 20

won’t be able to articulate properly the API’s abstractions to accomplish the

intended task. Even worse, the programmer may be unable to write any code

by simply not knowing what to do with the API’s primitives.

Another possible outcome is the artifact’s misuse, when the programmer

develops a compatible mental model of the underlying abstractions, but fails to

code a correct implementation of the solution. For example, the programmer

may write code to call a function passing wrong parameters, caused by not

fully understanding the operation’s contract.

In order to be effective, software reuse implies a programmer being able to

articulate the abstractions contained in the artifacts in a timely (and possibly

pleasant) fashion, solving the intended problem within a reasonable limit of

difficulties and errors. There is empirical evidence that certain aspects of

programming languages and APIs impose a greater difficulty on programmers,

leading to the introduction of errors in code, or misinterpretation of what

is represented in code. Also, there can be discrepancies between users’ and

designers’ conceptual, cultural and technical stances, which can also be a source

of breakdowns in the communication that takes place between them.

Based on the context and motivation presented so far in this text, the

main objective of this research is to investigate how the design of APIs and

programming languages may influence users’ success (or failure) in the attempt

of reading and writing code to perform a programming task. This investigation

focuses on a human-centric perspective of the communication process mediated

by these artifacts, and the cognitive impacts associated with this process.

This objective can be summarized in the following research question: How

communicative and cognitive aspects of the design of programming languages

and APIs influence their usage by programmers, leading to errors or difficulties

in writing and understanding code ?

Based on the possible outcomes of the search for an answer for this

question, a secondary objective of this work is to provide epistemic tools 7 and

a vocabulary to support API designers in the process of constructing these

software artifacts. Our goal is to provide a consistent set of aspects of what

should be thought of in terms API and language design, from a communication

and cognitive perspective. One possible contribution of this research study

would be to provide insights for designers to make them more aware of the

pragmatic condition of the artifacts in use. It is important to emphasize that

the objective is not to provide a complete set of factors that influence the

7According to de Souza (22), epistemic tools are “not used to yield directly the answer
to the problem, but to increase the problem-solver’s understanding of the problem itself and
the implications it brings about”.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 21

design process and its outcomes, but rather a significant one, depending on

what could be inferred from the qualitative analysis of selected empirical data.

It is important to distinguish between two main classes of APIs: 1)

‘standard’ APIs, those which are produced by the same group or institution

which is responsible for a programming language. These APIs usually provide a

set of services that extend the basic language’s functionalities; 2) ‘third-party’

APIs, those which are independent of the underlying programming language’s

producers, but uses it as the basis for its implementation and use. They usually

provide more specific services not contained in the standard APIs.

Concerning the first category of APIs, there is a ‘continuum’ between

the programming language and its standard API, since their design should be

mutually consistent with respect to the ‘message’ sent to users, considering

a communicative perspective. As explained in the next section, the studies

carried out in this thesis were based on empirical data associated with Java and

PHP’s standard APIs. Therefore, we take into consideration this relationship

between the standard API and its programming language when interpreting

the evidence contained in the analyzed empirical data. However, the results

obtained in this thesis are not restricted to this category of APIs. The difference

lies in the ‘communication sender’ involved, which allows us to include aspects

of the underlying programming language as part of the object of analysis when

evaluating a standard API from a communication perspective.

The next section describes the theoretical and methodological approach

elaborated to pursue these research objectives.

1.4
Approach

This section provides an overview of this work’s methodological approach,

in the context of the research objectives explained in section 1.3.

In order to investigate the communicative aspects of the interactions

between programmers, one of the first steps of the chosen research approach

was the collection of empirical evidence that suggested breakdowns in the

reception of the designer’s message, from the perspective of the programmer

(API or language user). This type of evidence can be found in different

sources like programming forums, discussion lists, Internet blogs, source code

repositories, bug tracking systems, and so on.

The main source selected for the collection of empirical data was the

issue tracking systems for two popular programming languages, namely PHP

and Java. In these systems, the usual work flow involves the creation of a

new record in the issue database by a member of the community of users (the

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 22

reporter). The user describes the problem (or suggestion) in the report, usually

following an informal protocol that includes a brief explanation, a small code

sample to illustrate the situation (if applicable), the expected result, and the

actual result. In the next step, a member of the community of developers

(the evaluator) analyzes the report, possibly making comments and classifying

the issue according to a predefined list of categories. The taxonomy used in

these categories varies among different issue tracker implementations, but most

systems include a classification entry specified as ‘not an issue’, ‘not a bug’ or

similar. This category of issue is of special interest for this research.

When a user registers a new entry in an issue tracking system, it may

be that she is facing a blocking situation, and is incapable of comprehending

and/or using a specific API or language feature. Other possibilities include the

user’s suggestion of a new feature, or a change in the language/API behavior

or implementation. The latter may indicate that the artifact’s design does not

meet the user’s expectations or needs. In any case, when the evaluator classifies

an issue as ‘not a bug’, this usually means that there is no point in the user’s

complaint, and that there is nothing to be ‘fixed’. In other words, it is as if

the evaluator meant to say: ‘it’s not a bug, it’s a feature.’. In a number of

cases, this situation may imply a breakdown in the user’s interpretation of the

language’s or API’s features. This is a primary object of investigation for the

objectives of this research.

As previously mentioned, the selected scope for the collection of empirical

evidence included the PHP and Java languages, and their respective standard

API’s. The basic criteria for choosing these languages was the language’s pop-

ularity (both appear high in the TIOBE language index8) and the availability

of a large database of registered issues. Also, the existing differences between

these languages influenced their choice, as they could add different perspect-

ives to the analysis. One of the main differences between Java and PHP is

their typing system (static for Java, dynamic for PHP). This characteristic

of the language may influence the kind of issues that users deal with when

interacting with an API. Also, Java is a general purpose object-oriented lan-

guage, while PHP is a procedural/object-oriented language with a clear focus

on the creation of Web applications. Another difference between the languages

is their intended audience: PHP aims to be an “easy to learn” language for

(possibly) novice programmers, and Java is more oriented to advanced pro-

gramming tasks.

In order to provide a solid theoretical foundation to the systematic

analysis of the empirical data collected, the research method is based on the

8http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 23

discipline of Semiotic Engineering (22). Semiotic Engineering views human-

computer interaction as a communication process between designers and users,

mediated by an interactive system (the designer’s proxy). More specifically,

an interactive system can be viewed as a ‘one-shot message’ from designer

to user about how the user should communicate back with the system,

which characterizes this process as communication about communication

(metacommunication).

Traditionally, Semiotic Engineering has been applied in the context of

the design and evaluation of interactive computer applications. Differently

from graphical user interfaces, a programmer’s interaction with an API occurs

when a program is written, compiled, executed and debugged. A programmer

reads documentation, reads source code, writes code to perform a certain task,

evaluates the return codes, handles exceptions, runs the program, analyses

the outcome, reads messages, output traces and logs, and so on. This type of

interaction inherently limits the designer options to be ‘present’ at interaction

time when compared to more visual and dynamic system interfaces. Also, this

type of interaction has a more ‘open’ and generative nature, as languages and

API’s can be used to create arbitrary pieces of software.

Despite the longer tradition in HCI-oriented research, the Semiotic En-

gineering Research Group (SERG) 9 has been working towards the application

of the theory and its research methods in the context of Software Engineering

research (23, 24, 25), including this research work. The basic idea behind this

trend is that the theory provides a consistent ontological and epistemic sup-

port to guide researchers in the investigation of the different forms of human

communication mediated by software. The group’s long term research agenda

includes the semiotic tracing of human communication aspects in the various

stages and facets of the software development domain, going up to the end

user’s perspective.

The systematic analysis of the empirical data collected has been per-

formed under the lens of Semiotic Engineering, which supported the commu-

nicative perspective of the qualitative research. In spite of the availability of

the discipline’s own set of scientific methods (26), they have not been dir-

ectly applied in the context of this research. This is due to the fact that both

methods were not well suited to the type of studies that have been carried

out. The Semiotic Inspection Method (SIM), as the name suggests, is an in-

spection method that focuses on the analysis of the communicability profile

of an interactive system (from the designer’s perspective), and is based on

specific scenarios. The Communicability Evaluation Method (CEM) is used in

9http://www.serg.inf.puc-rio.br/

http://www.serg.inf.puc-rio.br/
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 24

the evaluation of interactive systems from the user’s (receiver) perspective, by

analyzing empirical data from sessions involving participants interacting with

a system in a specific scenario. Nevertheless, the theoretical foundations of

these methods have been extensively used in the studies developed as part of

this research, as will be explained in chapter 3.

In the cognitive context, also a subject of investigation of this research,

the Cognitive Dimensions of Notations framework (CNDf) (27) provided

support to describe the impact of communicability issues on users. As the

object of study involves programming languages and API’s, notations play

a central role in the qualitative analysis, and the CDNf provides a good

vocabulary to describe the cognitive aspects involved. It also serves as an

epistemic tool to guide the researcher’s reasoning.

The use of the CDNf has a long tradition in research studies concerning

API design and evaluation (14). However, the investigation of this subject

from a communication perspective is, to the best of our knowledge, a novel

approach, especially when considering the theoretical support of Semiotic

Engineering. The methodological approach selected for this research intends

to provide an in-depth account of communicative and cognitive aspects in use

of programming languages and API’s. Given the intrinsic qualitative nature of

the studies performed in this research, there is no intention to generalize any

hypothesis or assumption in order to be predictive about successful design of

API’s or programming languages.

In order to conclude the overview of the methodological approach, figure

1.2 provides a high-level depiction of the steps of the research work’s strategy.

Chapter 4 provides a more detailed description of the approach.

Collection of empirical
evidence concerning

communicability issues
with APIs

Systematic analysis of
empirical data

Communicative and
cognitive aspects

Categorization of data

Themes, categories and
descriptions

iterations

Qualitative analysis of
results

Figure 1.2: Research strategy overview

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 25

1.5
Results

The research approach described in the previous section provided two

kinds of results, to be detailed in chapter 5.

First, the elaboration of a conceptual framework10 to support API

design discussion and evaluation, based on the proposed communicative and

cognitive perspective. This framework consists of a set of epistemic tools which

contribute to greater awareness of the nature of communicability issues that

may occur in the use of APIs.

In addition, this thesis’ results include qualitative findings deriving from

the elaboration and use of the epistemic framework in the study of empirical

data collected from bug reports, as explained in section 1.4.

1.6
Outline

This section provides an overview of the organization of the remaining

chapters in this thesis.

Chapter 2 reviews related studies grouped by their main topic, describing

their influence on this research work, when applicable.

Chapter 3 describes in detail the theoretical foundations that supported

our research approach and methodology, encompassing Semiotic Engineering

and the Cognitive Dimensions of Notations framework.

Chapter 4 presents the methodological approach and describes the API

studies carried out in the research process.

Chapter 5 analyzes and discusses the research results, organized in

two parts: 1) the epistemic tools that compose the conceptual framework

elaborated in the research process; and 2) qualitative findings derived from

the application of the framework.

Chapter 6 concludes this thesis by providing a final discussion about

the research results’ implications, main contributions and limitations. It also

describes some opportunities for future research.

10The meaning of ‘framework’ in this context is not related to ‘software framework’, a
common term in programming. We refer to ‘framework’ in its more general sense, as an
analytical tool that helps us to reason about a specific domain of problems.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

2
Related Work

This chapter contains an overview of research studies which have similar

interests or objectives to this work, in various ways. It also provides a

more detailed description for those studies which have especially inspired or

influenced this research.

As mentioned in chapter 1, to the best of our knowledge, the communic-

ation perspective adopted in this research is a novel approach in the literature.

For this reason, the studies selected in this chapter are mostly related to API

and programming language usability aspects, as well as other API and language

research topics in general. The set of studies is not meant to be exhaustive,

but a representative sample of previous scientific work in the area.

The following sections propose an organization of the selected studies

based on their main contribution or object of analysis. Although these studies

could have been categorized in different ways, the main goal is to provide a

high-level classification of the chapter contents according to different research

approaches.

As such, the selected studies have been organized in the following

categories: 1) API and language evaluation; 2) API and language design;

3) API learning and documentation; 4) programming, communication and

semiotics; and 5) other studies. This chapter’s sections describe related work

according to each of these categories, ending with a section with general

considerations about the role of some studies in the remaining chapters. As a

general rule, studies inside each category follows an approximate chronological

order.

2.1
API and Language Evaluation

This section provides an overview of representative work oriented to the

evaluation of the quality of languages and APIs, especially from a usability

perspective.

Early work on language and API evaluation. The first studies

on this subject have been influenced by previous work in the areas of “Em-

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 27

pirical Studies of Programming”, “Software Psychology” and “Psychology of

Programming” (11). Researchers in these areas have been especially active in

the 1970’s and 1980’s. Back then, studies focused on the psychological and

cognitive aspects of programmers, and usability was not an usual term.

In 1981, Sheil (28) provided a review of the psychological research on

programming at the time, classifying existing work according to the following

categories: studies of programming notation (conditionals, control flow, etc.),

studies of programming practices (indenting, naming, etc.), and studies of

programming tasks (learning, coding, debugging). These categories provide

a high-level view of the main focus of researchers at that time. In the review,

Sheil criticizes the lack of methodological rigor in some of these studies, arguing

that “they appeal to our own ‘common sense’ model of the cognitive processes

involved in programming”. This is still a source of concern to some researchers,

like Hanenberg (3), who makes similar claims for the use of appropriate

research methods in programming language research.

In the 1990’s, with the increasing popularity of object-oriented languages

and libraries, there was a growing interest in studying the human aspects of

programming languages, APIs and reuse. Methods and techniques from the

Human-Computer Interaction community had been gradually introduced in

studies on programming and human behavior. For instance, Rosson and Carroll

reported an empirical study (29) to provide a qualitative characterization

of reuse strategies among expert Smalltalk programmers. They observed a

systematic use of code from example applications as an implicit specification

for reuse, which they called “usage context”. The authors referred to this

strategy as “reuse of uses”: programmers searched for similar code in example

applications to guide their own tasks.

The study by McLellan et al. (30), in 1998, is one of the first well-

known usability evaluations of an API. The authors collected data from the

observation of 20 professional programmers interacting with an actual API

related to the oil industry domain. The study included HCI techniques like

scenario-based sessions, videotaping, think aloud protocol and interviews. They

reported findings about the influence of code examples, which supported

some activities among programmers, but hindered others. According to the

authors, the code example “functioned as a way to ‘show off’ the library’s

capabilities, allowing the programmers to form hypotheses about the library

itself ”. However, they also report that the example code sometimes violated

“rules of programming discourse” (31), which was a source of confusion among

programmers. Their results informed improvements to the API’s design, as it

was an actual project used in an industrial context. In addition, their report of

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 28

programmers’ behavior and their novel approach influenced other researches

in academia to investigate API’s from a human perspective.

Cognitive Dimensions of Notations Framework. The first studies

on API and language evaluation based on the use of the Cognitive Dimensions

of Notations Framework (CDNf) (27) have been performed by Clarke and his

colleagues at Microsoft. In the first paper reporting these studies (32), Clarke

described how the cognitive dimensions had guided the evaluation of C#, a

new programming language at the time. They had a special interest in evaluat-

ing the language’s new features when comparing to older languages like C++,

for example. The study involved laboratory sessions with programmers, asking

participants to complete a programming task and then completing a question-

naire. The researcher analyzed their observations and the participants’ verbal

protocol, together with answers to the questionnaire, under the perspective of

the cognitive dimensions. The study provided valuable results that motivated

the continuation of their work, especially in the context of library and API us-

ability evaluation (14, 33, 34). Since then, their studies have influenced other

researchers’ work, including most papers mentioned in this chapter.

Lastly, the work by Maia et al. (35) proposes an adaptation of the CDNf

to investigate and compare flexibility aspects of two middleware platforms,

characterizing the cognitive effort made by programmers in the adaptation of

these systems.

Methods. Following these first studies, other researchers proposed differ-

ent methods to evaluate APIs. The CDN-based method proposed at Microsoft

has influenced the work of other groups, positively or not. For instance, the

work by Bore and Bore (36) criticizes the use of the cognitive dimensions to

evaluate APIs, arguing that there are too many dimensions, and that “their

interpretation is often not obvious, and involves subjective judgment”. Instead,

they propose a set of “API profile dimensions” that can be “measured through

simple mechanical procedures with little subjective judgment”. They also men-

tion that the proposed method was tested in the evaluation of an API in the

consumer electronics domain.

Other research groups have proposed methods to evaluate various aspects

of APIs based on different approaches. As an example, Ratiu and Jurjens

propose a formal framework to evaluate how well an API represents the domain

concepts involved (37). There is also work proposing methods based on the text

analysis of API elements (38), on the use of a “lightweight walkthrough” of

the API (39), and on a technique of visual knowledge representation called

“Concept Maps” (40).

Another evaluation method that should be mentioned is called “API

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 29

usability peer reviews” (41). It is an inspection method developed at Microsoft

that try to identify usability issues in an API by promoting review sessions

including programmers with different areas of expertise, and also uses the

cognitive dimensions of notations as a vocabulary to describe the findings and

support the discussion.

Recently, Grill et al. proposed a usability evaluation method consisting of

three phases based on the combination of HCI techniques: heuristic evaluation,

developer workshop and interviews (19).

Case studies. The research group headed by Myers at the Carnegie

Mellon University has performed interesting case studies in the evaluation of

various API design aspects and their impact on usability. In some of these

studies, they adopted a strategy to factor out a single API design aspect

in order to investigate its influence on usability, in an attempt to generalize

their findings to other APIs. For instance, they have investigated the usability

consequences of using the factory pattern to create objects while using an API

(42). They also reported on the impact of requiring parameters in an object’s

constructor, as opposed to the create-set-call idiom to instantiate, configure

and use an object in Java (15). The influence of method placement inside

classes on API learning has also been one of their objects of study (43).

A more recent case study of API usability evaluation has been repor-

ted by Piccioni et al. (44), which combines interview questions based on the

CDN framework with observations of programmer behavior, using a classific-

ation created by the authors and named as “usability tokens”. These tokens

comprehend a set of five labels that shortly describe an event related to par-

ticipant’s behavior during the programming sessions, as follows: “surprise”,

“choice”, “missed”, “incorrect” and “unexpected”. This classification has an

interesting analogy with our approach to the study of APIs, based on the

investigation of communication breakdowns.

It is also worth mentioning the empirical study carried out by Spiza and

Hanenberg (45) concerning the influence of using type names on API usability,

even in the absence of static type checking. In their findings, the mere use of

a type name had a positive influence on the participants’ performance, but a

single wrong type name had a negative impact on development time.

Metrics. The CDN framework may help in the evaluation of measurable

aspects of an API, but it does not have a quantitative nature. Therefore, some

researchers proposed methods to provide an objective way to quantify usability

aspects of APIs. For instance, studies about metrics based on complexity

factors that impact an API’s usability have been performed by Doucette (46),

de Souza and Bentolila (47), Scheller and Kuhn (48), and Cataldo and de

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 30

Souza (49). In a more recent work on metrics, Rama and Kak propose a way of

measuring “structural defects” in API method declaration and documentation,

considering the recommendations and guidelines given by experts and found

in the literature (50).

2.2
API and Language Design

This section describes representative work concerning various aspects

of API and language design, including guidelines derived from experienced

professionals and researchers, and also studies that investigate factors that

influence this type of design.

Design aspects. Researchers have been investigating various design

aspects that may impact programmers when interacting with an API. For

instance, Stylos has proposed a model of API design decisions (51), identifying

the main architectural and language level decisions that designers should

consider when creating a set of classes. In spite of being Java-oriented, the

model provides an interesting organization of the design space for these

decisions that applies to most object-oriented programming languages.

In a different approach, Zibran et al. performed qualitative and quant-

itative analyses of bug reports, searching for a classification of factors that

affected the usability of the APIs studies (52). They identified a set of 22

usability factors like complexity, naming, documentation, consistency, error

handling, and so on. Although many factors from their findings were not new,

the study provided a quantitative indication of the relative importance of these

factors, at least in the bug repositories where data has been collected.

Expert recommendations and guidelines. In 1990, Meyer wrote a

paper reporting the experience of designing a programming language standard

library, the Eiffel libraries (53). Although the report does not focus on usability

issues, it does contain interesting design aspects and lessons learned from this

large project.

Other researchers argued for the relevance of human aspects in the

design and evaluation of programming languages and APIs, as programmers

are frequently left out of this discussion. Arnold suggested the use of HCI

techniques and provided interesting examples of how API design can be

improved (12). In a similar fashion, Henning provided a reflection about the

impact of bad APIs, including compelling examples that support his argument

(6).

Finally, Bloch is an often cited researcher and practitioner in the area of

API design, for having proposed guidelines and recommendations that strongly

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 31

influenced scientific and technical work related to this theme (7, 54). Other

influential expert guidelines have been collected in books by Cwalina and

Abrams (9), from Microsoft, and also by Tulach (8), creator of the NetBeans

integrated development environment (IDE).

2.3
API learning and documentation

This section presents selected studies investigating documentation as-

pects and other factors that may impact programmers’ experience when using

and learning a new API.

Learning. Robillard reported the results of an empirical study at Mi-

crosoft conceived to identify obstacles that professional developers faced when

learning a new API (55). The study produced 5 high-level categories of

obstacles: resources, structure, background, technical environment and process.

The results of this survey served as input to a larger study that also took place

at Microsoft (17), which included qualitative interviews and a follow-up sur-

vey to confirm the general findings and collect additional data. As previously

mentioned in chapter 1, this work provided interesting findings concerning the

impact of documentation issues on programmers that try to learn a new API.

A different approach has been adopted by Hou and Li, as they also in-

vestigated learning obstacles in using frameworks and APIs, but performed an

exploratory study in which they analyzed data from programming newsgroups

discussions (56), focusing on the Swing Java Framework.

Other researchers have performed exploratory studies in which they trace

and analyze the questions and answers that programmers have to deal with,

especially when changing a program or when learning a new API. Examples of

this approach can be found in the work by Sillito and Murphy (57) (changing a

program), and also by Duala-Ekoko and Robillard (58) (learning a new API).

The need for better support tools for API learning has also motivated

the study carried out by Kuhn and DeLine (59). They collected information

from sessions with 19 programmers at Microsoft, in order to investigate the

requirements and design implications for tools that provide developers with an

effective learning experience when using an API.

Documentation. Considering that documentation has a key role in

the process of communicating the design intent behind an API, work in this

area is also of interest in the context of this thesis. In one type of approach,

researchers investigate tool support to enhance documentation usability. For

instance, Dekel and Herbsleb created a tool called “eMoose” to address the

need of “pushing” information about API directives that have special relevance

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 32

for the programming task being performed (60). Stylos and Myers proposed

and evaluated a tool called “Jadeite” to support users in searching API

documentation, displaying frequently used classes and methods in a more

noticeable fashion, according to the code being written (61).

The study carried out by Ko and Riche (62) aimed to bridge the gap

between API documentation and programmers’ conceptual knowledge about

the domain to which the programming task refers. In their study, participants

were asked to explore the feasibility of implementing two requirements related

to a domain they were not familiar with, using a predefined set of APIs. The

authors performed an open coding of participants’ utterances corresponding to

their judgments of the feasibility of the requirements, and arrived at 5 categor-

ies: relevance, usability, audience, proximity and metacognitive judgments.

In addition, some empirical studies have been trying to identify and cat-

egorize the types of knowledge contained in API documentations, and their

distribution. Monperrus et al. created a taxonomy of 23 API directives, which

are “natural language statements that make developers aware of constraints

and guidelines related to the usage of an API” (63). Following their work,

Maalej and Robillard went further and created a taxonomy of 12 API know-

ledge types, including “directives” as one of the identified types (64). Their

taxonomy will be further discussed in chapter 4.

Still in the domain of API documentation, following the work by Spiza

and Hanenberg cited in section 2.1, Endrikat et al. performed an experiment

and exploratory study to compare the impact of using documentation and a

static or dynamic type system on the usability of APIs (65).

2.4
Programming, Communication and Semiotics

This section refers to related studies on programming based on concepts

borrowed from communication or semiotic theories.

Programming as communication. Communication-related ap-

proaches to programming are not frequently found in the literature. An

early work exploring this perspective has been developed by Soloway and

Erlich (31), and is frequently cited in studies on programming comprehension.

In this paper, they argue that experienced programmers acquire two types

of specific knowledge: 1) “programming plans”, term describing program

fragments that represent patterns of sequences that have common goals and

characteristics; and 2) “rules of discourse”, which specify common conventions

in programming, being analogous to discourse rules in conversation.

Blackwell investigated mental models contained in Java programming

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 33

libraries, finding some interesting insights about the conceptual metaphors

encoded in the Java documentation (66).

In order to investigate how knowledge is shared in a team of programmers,

Dubochet developed a study in which he considered programming languages as

a medium for human communication, providing insights about how common

grounds influence programmers’ code comprehension (67).

Orchard discussed programming language design and claimed that “a

programming language should improve the four Rs of programs: reading,

writing, running, and reasoning”. He also stated that the “four Rs” provide

a framework for thinking critically about the effectiveness of languages and

language features (68).

Semiotics and programming. Zemanek has provided one of the

first semiotic perspectives of programming languages (69). In his paper, he

discussed how semiotic concepts apply to programming languages, making an

analogy with natural languages, with special attention to pragmatics.

An example of a combination of semiotic and cognitive approaches can

be found in the work by Kamthan, in which he developed a framework based

on concepts from semiotics and on the CDN framework to evaluate formal

specifications using the Z language (70).

Lastly, the book by Tanaka-Ishii (71) provides a deep and solid semiotic

account of programming paradigms and languages, from a theoretical per-

spective. Even though this thesis’ approach has been guided by the theory of

Semiotic Engineering (as opposed to Semiotics in general), Tanaka-Ishii’s book

has also been a source of inspiration for this work.

2.5
Other studies

This section presents other studies worth mentioning that could not fit

into the categories of previous sections.

Computer-supported Collaborative Work. De Souza et al. provided

studies that investigate the roles of APIs in the context of collaborative

work, and observed that they can be metaphorically regarded as contracts,

boundaries or communication mechanisms (4, 72).

Meta studies. Burns et al. conducted a systematic mapping study of

the literature on API usability, reviewing a total of 28 papers and categorizing

them by research type. They also provided a closer analysis of the papers’

evaluations to summarize recommendations (73). Most of the studies analyzed

have also been cited in this text.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 34

Another type of meta-study performed by Stefik et al. provides a system-

atic evaluation of the use of empirical evidence with human users contained in

the papers from workshops PPIG, Plateau and ESP. They analyzed the col-

lected data both qualitatively and quantitatively to assess the overall quality

of the evidence on this type of study (74).

Security. From a software security standpoint, Wurster and Oorschot

claimed that not all developers can be security experts. As such, they argued

that programmers that design and develop APIs intended to a large community

of users should put more effort into its usability, with a stronger focus on

security (75).

2.6
Considerations about related work

This section wraps up the chapter and highlights some aspects of related

work described in previous sections that influenced this research, and how they

appear in the remaining of this text.

Similarly to studies from Clarke and others, e.g. (32), our research

approach uses the CDNf to study APIs. However, differently from these studies,

we frame the use of the cognitive dimensions in a communicative context, as

will be explained in the remaining chapters.

Maalej and Robillard’s taxonomy for ‘patterns of knowledge in API

documentation’ (64) has been used in the studies carried out in this research

in order to provide conceptual support to the analysis of bug reports, as will

be explained in chapter 4.

Piccioni’s usability tokens(44) describe users’ reactions during their inter-

action with APIs. We provide a classification for the effects of communicability

on users which shows some similarities to their work. However, our classifica-

tion is based on a communicative perspective of the phenomenon, and shows

a different organization of the categories, as will be detailed in section 5.2.

Next chapter introduces the theoretical foundations that supported the

development of this research.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

3
Theoretical Foundations

This chapter introduces the theories and methods that inspired and ori-

ented our research work. The text provides an overview of Semiotic Engin-

eering, describing its foundations and main concepts, and explaining why the

theory is suited for supporting the research. In addition, an interpretation

of some the theory’s concepts in the context of API design and evaluation

is discussed. In addition, this chapter offers a brief description the Cognitive

Dimensions of Notations framework, also discussing its role in the research

work.

3.1
Semiotic Engineering

Semiotic Engineering has been developed as a theory for Human-

Computer Interaction (HCI), and provides a semiotically-based interpreta-

tion of software interface design and interaction as a communication process

between designers and users1. In this context, a software artifact plays the

role of the ‘designer’s deputy’ at interaction time, reproducing the designer’s

messages and interpreting user’s responses. The theory has been supporting a

number of studies which provided new perspectives and insights to the HCI

community, and more recently has been applied in the context of Software En-

gineering research. This thesis is an example of the latter case, as it brings a

Semiotic Engineering perspective to the study of programming-related topics.

Semiotic Engineering has its roots on Semiotics, the study of signs,

signification systems and the process of meaning construction, with strong

philosophical and linguistic connections. This section briefly introduces the

main concepts required for a general comprehension of the theory and its

application in the context of this research.

1In Semiotic Engineering theory, the singular terms ‘designer’ and ‘user’ are frequently
used to refer to two ‘groups’ of people: one that designs and develops a technology and, on
the other side, another group which uses the technology for a variety of purposes in a number
of situations. Adopting the term ‘designer’ instead of ‘developer’, for example, highlights the
importance of communicating the design logic, which should be followed in the technology’s
development.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 36

3.1.1
Signs and semiosis

Charles Sanders Peirce, one of the founders of Semiotics, defined a sign

as “anything that stands for something else, to somebody, in some respect or

capacity” (76). Peirce’s theory was strongly influenced by his background as

a logician, philosopher and scientist. In his studies, he developed an interest

in epistemology, investigating the nature of mind and the process of acquiring

knowledge.

Ferdinand de Saussure, another important thinker and contemporary of

Peirce (c. 1900), also investigated signs and signification. He was the founder of

Semiology (77), a theory of signs based on the study of language and linguistics.

He studied the organization of signs as arbitrary units used by individuals to

communicate in a number of contexts, and proposed the distinction between

langue, the abstract system of these units of language, and parole, the actual

use of signs in communication. He proposed a dyadic model of signs, consisting

of two parts: the signifier and the signified.

Peirce proposed a model of sign structure based on three constituents:

object (referent), representamen (representation) and interpretant (meaning).

One of the consequences of Peirce’s triadic model is the need of an interpreter:

meaning is associated with a representation only by the mediation of an

interpreter’s ‘mind’. This implies that a representation of an object may

trigger different meaning-making processes, depending on the mind involved

in signification. This process of sense making is known as semiosis, and it

may be repeated indefinitely, since the association of meaning to a sign can

potentially trigger other signs, in a recursive process that is theoretically

unlimited (‘unlimited semiosis’).

By itself, the perspective of semiosis as an unlimited process is problem-

atic, since it does not explain how stability is reached in the construction of

meaning. According to Peirce, this process is halted due to abductive reasoning.

3.1.2
Abductive reasoning

Peirce’s theory proposed that, in the meaning-making process, an inter-

preter’s mind formulates plausible rules that contribute to explain an observed

result and determine the ‘meaning’ constituent of a sign. If a confirming case

is observed, the rule is (at least temporarily) reinforced. Conversely, if a con-

tradicting observation occurs, the rule is revised to provide a new hypothesis

to explain it. This process, known as ‘abduction’ or ‘abductive reasoning’, may

proceed iteratively until reaching a stable rule. Figure 3.1 illustrates this cycle.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 37

Observation
Plausible hypothesis

(rule A)
Contradicting

case ?

Y

ConfirmationN

Revised hypothesis
(rule B)

Contradicting
case ?

N

Revised hypothesis
(rule C)

Y

....

Figure 3.1: Abductive reasoning

This type of reasoning contrasts with deductive reasoning, which consists

of applying a known rule to an observed case, leading to the inference of new

results. Abductive reasoning explains how the interpretive process (semiosis)

can be halted by finding a plausible hypothesis which explains a pragmatically

defined set of similar cases, which are already confirmed and tested. This

process may also be interrupted due to the finite and fallible nature of the

human mind.

3.1.3
Communication processes

Semiotic Engineering relies on Roman Jakobson’s model (78) for the

characterization of the communicative design space. This model consists of

six elements: sender, receiver, channel, message, code and context. Figure 3.2

illustrates the model and its components.

Figure 3.2: Jakobson’s model of the communication space

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 38

In summary, the model states that a communication process consists of

an individual (sender) creating content (message) encoded in a representation

(code) and sending it to its peer (receiver) by certain means (channel), in

accordance to shared assumptions and knowledge (context).

In addition to Jakobson’s model, communication can also be character-

ized in terms of three dimensions: intent, content and expression. Intent cor-

responds to sender’s goals in communication; expression refers to the use of

different code forms to represent the message; and content describes the mean-

ing carried by the sender’s message. These concepts will be further discussed

in chapter 5.

According to the definition in (22) p. 26, communication is “the process

through which, for a variety of purposes, sign producers (i.e., signification

system users in this specific role) choose to express intended meanings by

exploring the possibilities of existing signification systems or, occasionally, by

resorting to non-systematized signs, which they invent or use in unpredicted

ways.” In this context, a signification system consists of a set of culturally

established representations and their associated rules, providing codes for

social communication processes.

Semiotic Engineering concerns the study of two classes of communica-

tion processes: 1) user-system communication, comprehending user’s interac-

tion with the designer’s deputy (i.e. the interactive software system); and 2)

designer-to-user communication, in which designers send a message to users to

tell them how to communicate back with the system and, for this reason, it

can be regarded as a metacommunication process. The concept of metacom-

munication will be discussed later in subsection 3.1.6.

3.1.4
Software as an intellectual artifact

The term ‘artifact’ describes physical or mental objects or tools created

by humans that results from our ingenuity. An ‘intellectual artifact’ is a special

type of artifact that possesses the following characteristics, as described by de

Souza in (22), p.10:

– it encodes a particular understanding or interpretation of a problem

situation;

– it also encodes a particular set of solutions for the perceived problem

situation;

– the encoding of both the problem situation and the corresponding

solutions is fundamentally linguistic (i.e., based on a system of symbols

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 39

– verbal, visual, aural, or other – that can be interpreted by consistent

semantic rules); and

– the artifact’s ultimate purpose can only be completely achieved by its

users if they can formulate it within the linguistic system in which the

artifact is encoded (i.e., users must be able to understand and use a

particular linguistic encoding system in order to explore and effect the

solutions enabled through the artifact).

This definition is suitable to describe an interactive piece of software,

which also consists of a linguistic encoding of a particular solution to a

problem. However, what distinguishes software from other intellectual artifacts

is the fact that the solution is encoded in an artificial language. Similarly

to natural languages, artificial languages also have lexical, syntactic and

semantic rules. However, differently from natural languages, artificial languages

do not necessarily have a set of pragmatic rules. These rules provide a

refinement of natural languages’ semantic rules with respect to the context

of communication.

In semiotics, pragmatics accounts for the relation between two parts

of a sign: representation and meaning. In a linguistic approach, pragmatics

studies how context influences receivers in the assignment of meaning to

messages encoding senders’ intent. Regarding the intellectual nature of a

software artifact and the typical lack of pragmatic rules in artificial languages,

one of the goals of Semiotic Engineering is to provide a deep account of

the pragmatic aspects of human communication mediated by software in an

attempt to provide support to overcome the inherent limitations if this type

of communication.

3.1.5
Pragmatic concepts and principles

Speech Act theory (79, 80) defines pragmatic concepts which influenced

HCI theories in general, and Semiotic Engineering in particular. It argues

for the use of language as a means to do things or to achieve some effect

in the world. This perspective promotes a refinement in the use of language,

by distinguishing between the language user’s intent (the illocutionary act)

and the effects that result from language use (the perlocutionary act).

There are five categories to characterize the nature of speech acts, as

described by in (22), p. 60:

– assertive: speech acts that commit the speaker to the truth of what is

being said;

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 40

– directive: speech acts that aim at causing the hearer to do something;

– declarative: speech acts that change the status of the world by virtue of

what is said, by whom, and to whom;

– commissive: speech acts that commit the speaker to taking some partic-

ular course of action in the future;

– expressive: speech acts that aim at drawing the hearer’s attention to the

speaker’s psychological state or attitude.

Influenced by speech act theory, philosopher Paul Grice proposed the

Cooperative Principle (81), a pragmatic principle that helps to describe the

constraints involved in the elaboration of a conversation. The Cooperative

Principle defines four ‘maxims of conversation’, as described in (22), p. 61:

– The maxim of quantity: participants in a conversation should make their

contribution as informative as necessary; not more, not less;

– The maxim of quality: participants in a conversation should only say

what they honestly believe to be the case; the should acknowledge their

doubts about what they don’t know for a fact, and never tell a lie;

– The maxim of relation: participants in a conversation should only talk

about what is relevant for the ongoing conversation;

– The maxim of manner: participants in a conversation should express their

contribution clearly and unambiguously.

Pragmatists’ efforts to formulate concepts and principles provided rel-

evant contributions to refine the study of communication. However, cultural

factors and individual characteristics of speakers and listeners strongly in-

fluence the actual outcomes of communication. For this reason, pragmatics

is usually described in terms of principles, not rules, since human reasoning

and behavior cannot be always predicted. Therefore, Semiotic Engineering is

strongly influenced by pragmatics, due to the intellectual nature of a software

artifact and its linguistic encoding of an intended solution to a problem. These

concepts and principles will be further referenced in chapter 5.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 41

3.1.6
Metacommunication

Metacommunication can be technically defined as “communication about

(aspects of) communication”. It is a useful resource to provide ‘hints’ to

receivers about how communication itself should be interpreted.

In HCI terms, this is a commonly explored technique to tell users a

message about how they could achieve certain goals by interacting with it. For

instance, the presence of a hyperlink or a button in an eletronic document may

suggest that something will happen if the user clicks on it.

A particular characteristic of metacommunication in the HCI context is

that the designer encodes all contents in a single and immutable message, which

makes it a one-shot message. This message can be paraphrased by a concept

from Semiotic Engineering known as the metacommunication template:

“Here is my understanding of who you are, what I’ve learned you

want or need to do, in which preferred ways, and why. This is the

system that I have therefore designed for you, and this is the way

you can or should use it in order to fulfill a range of purposes that

fall within this vision”.

The template takes the designer’s perspective to communicate the design

vision encoded in a software artifact. Metacommunication is only complete if

the user interprets the message’s signs in a way that generates meanings which

are compatible with the designer’s intent. Otherwise, user-system communic-

ation is unsuccessful, which implies that metacommunication is not achieved

either.

3.1.7
Semiotic Engineering ontology

The categories of ‘things’ that are available for studies in Semiotic

Engineering are described by the theory’s ontology, which comprehends:

– signification processes: signs and semiosis

– communication processes: direct user-system communication and

designer-to-user metacommunication

– interlocutors: designers, systems and users

– design space: senders, receivers, contexts, codes and messages

This ontology, despite its reduced size, encompasses all the elements

that compose a communicative view of HCI, including the concepts, actors,

processes, and a model that organizes their interaction in the design space.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 42

3.1.8
Communicability

‘Communicability’ is a key concept in Semiotic Engineering, and it has

been evolving over the years along with the theory’s refinement, as discussed

in (26). One of the first definitions of communicability described it as “the

distinctive quality of interactive computer-based systems that communicate

efficiently and effectively to users their underlying design intent and interactive

principles” (82).

In 2005, the concept has been revised to explicitly include the inter-

locutors involved (designer’s deputy and user): “Communicability can (. . .) be

more technically defined as the designer’s deputy capacity to achieve full meta-

communication, conveying to users the gist of the original designer’s message.

(. . .) Communicability applies to both interpretive and expressive codes that

the designer’s deputy handles for generating and interpreting messages during

situated interaction with users.” (22)

The experience acquired from a number of studies with Semiotic Engin-

eering methods led to another refinement in the definitions above, especially

crafted to avoid misunderstandings concerning the use of terms like ‘efficient’

and ‘effective’, which are frequently used in quantitative studies but with dif-

ferent semantics. Therefore, the concept of ‘efficient and effective communic-

ation’ has been defined as “communication that is organized and resourceful

(efficient), and achieves the desired result (effective)” (83).

3.1.9
Classification of signs

Semiotic Engineering provides a classification of signs that reflects the

nature of their representation in designer-to-user metacommunication. The

classification is mostly associated with the inspection of software artifacts using

the Semiotic Inspection Method (see below), which provides a communicability

profile for artifact’s design. The classification consists of the following types of

signs:

– static: signs whose representation is motionless and persistent when no

interaction is taking place;

– dynamic: signs whose representation is in motion regardless of users’

actions or whose representation unfolds and transforms itself in response

to an interactive turn;

– metalinguistic: signs that represent other static, dynamic, or metalin-

guistic signs.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 43

Static signs stimulate users to interact with the system, and provide

hints about this interaction (e.g. a button with an ‘open’ label). As interaction

proceeds, dynamic signs confirm or not users’ expectations, as anticipated by

static signs (e.g. the opening of a ‘file open’ dialog after clicking on the ‘open’

button). The meaning of static and dynamic signs is explained and illustrated

by metalinguistic signs (e.g. documentation about the behavior of the ‘open’

button).

3.1.10
Scientific methods

Semiotic Engineering provides two methods for scientific investigation:

the Semiotic Inspection Method (SIM) and the Communicability Evaluation

Method (CEM) (26). These methods have been designed to support a new

account of known problems, by using theoretical concepts that help in the

formulation of new research questions. They may also contribute to the

identification of new solutions to known problems, or even the identification

of new problems, theories, concepts or methods.

Semiotic Inspection Method

The goal of SIM is to evaluate the communicability of a software

artifact, focusing on the emission of the message. It has been originally

developed to explore how interface languages communicate, implicitly or

explicitly, the logic and design intent from those who conceived the system.

The metacommunication template guides the organization and execution of

the method’s steps.

The method consists of a sequence of five steps, where the first three

deconstruct the designer’s message by performing a segmented analysis of the

different classes of signs (static, dynamic, metalinguistic). The last two steps

reconstruct the message by integrating and interpreting the deconstructed

signs: the fourth step compares the results of the segmented analyses performed

in the first three steps, and the last step does a final evaluation of the artifact’s

communicability. The result is a characterization of the message structure in

terms of signs and meanings.

After inspecting a software artifacts’ signs, an analyst should be able to

fill out the metacommunication template’s parts, according to her findings.

This allows to contrast aspects of the designer’s intended and actual meta-

communication, in order to find inconsistencies, incompleteness, ambiguities

or other issues that may affect the artifact’s communicability.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 44

Communicability Evaluation Method

Contrasting with SIM, CEM is an evaluation method that focuses on

users’ reception of metacommunication. The method involves the collection of

empirical data associated with users’ interaction with a software system, in a

specific scenario of use. The main objective in the analysis of collected data is to

identify user breakdowns that reveal communicative failures. The evaluation

also allows the inference of other aspects of communicability, even positive

ones. In order to allow a pragmatic interpretation of the communication

between the user and the designer’s deputy, this type of evaluation should

only refer to situated interaction determined by goal-oriented scenarios.

The classification of failures is based on the use of communicability tags,

which provide a diagnostic of the nature of users’ difficulties faced during

interaction. There are three major types of failures: complete, partial and

temporary, described in detail further in this section. Each type corresponds

to inconsistencies between intent and effects of communication (illocutionary

and perlocutionary acts). They also distinguish between the impact on users’

goals (global illocution) or strategies (local illocution).

The diagnostic of failures in CEM occurs by tagging users’ utterances

identified in empirical data. Tagging applies to goal-oriented tasks, and the

evaluator needs to do an assessment of the designer’s metacommunication

message conveyed by the application before the evaluation tests. Then, she

should select relevant tasks in the application that should be part of the

evaluation tests.

Tagging comprehends thirteen basic communicability utterances to char-

acterize breakdowns in user-system communication (communication between

the user and the designer’s deputy). Communicability utterances have been

used mostly in evaluations of interactive interfaces, but they can be applied to

most computer-based techonologies, and its use with respect to APIs will be

further discussed in chapter 5.

Complete Failures. Complete failures occur when global illocution is

not consistent with global perlocution, which corresponds to situations in

which users’ goals are not achieved. This type of failure can be further spe-

cialized to distinguish between situations where user is aware of failure or not.

Table 3.1 presents the tags that represent this type of failure, its description

and illustrative symptoms. The contents of tables in this section describing

communicative tags have been adapted from CEM method explanation in (26).

The ‘looks fine to me’ is the most severe breakdown, since it represents

a complete failure in which the user thinks that she has achieved her goal,

without actually achieving it. For this reason, only the evaluator is able to

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 45

Complete failures
Distinctive
feature

Tag Illustrative symptoms

User is conscious of
failure

“I give up.” The user believes that she cannot achieve her
goal and interrupts interaction.

User is unconscious
of failure

“Looks fine to me.” The user believes she has achieved her goal,
although she has not.

Table 3.1: Complete failures

identify this tag’s occurrence, as the user is clearly not in a situation to be

able to realize it (or else she would not be mistaken in the first place).

Partial failures. These failures correspond to situations in which local

illocution is consistent with local perlocution, but somehow the user fails to

do exactly what is expected. Failure subtypes indicate if user understands the

designer’s deputy illocution or not. This means that users achieve their goals

by interacting with the system in unexpected or inefficient ways. Table 3.2

illustrates the tags that correspond to a diagnostic of this type of failure.

Partial failures
Distinctive
feature

Tag Illustrative symptoms

User understands
the design solution

“Thanks, but no,
thanks.”

The user deliberately chooses to communicate
her intent with unexpected signs, although she
has understood what preferential designer’s
solutions are promoted.

User does not un-
derstand the design
solution

“I can do other-
wise.”

The user communicates her intent with un-
expected signs because she cannot see or un-
derstand what the system is telling her about
better solutions to achieve her goal.

Table 3.2: Partial failures

Temporary Failures. Lastly, temporary failures happen when global

illocution is consistent with global perlocution, but local illocution is not

consistent with local perlocution. This situation indicates problems in the

user’s strategy to achieve her goal, which needs to be revised. There are

three subtypes of temporary failures. First, user’s semiosis may be temporarily

halted, because she is trying to find a way to express her intended action, could

not understand system communication or does not know how to proceed. Table

3.3 illustrate the first group of temporary failures.

The second group of temporary failures describes breakdowns that occur

when the user realizes that her illocution is not appropriate for the intended

action. This may be caused by the user expressing his intent in the wrong

context, using the wrong expression or following a wrong path in conversation.

Table 3.4 summarizes these failures.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 46

Temporary failures: (1) user’s sense making is temporarily halted
Distinctive
feature

Tag Illustrative symptoms

Because she cannot
find he appropriate
expression for her
intended action.

“Where is it?” The user knows what she is trying to do but
cannot find an interface element that will tell
the system to do it. She browses menus, opens
and closes dialog boxes, etc. looking for the
particular sign.

Because she does
not see or under-
stand the designer’s
deputy’s commu-
nication.

“What happened?” The user does not understand the system re-
sponse to what she told it to do. Often, she
repeats the operation whose effect is absent
or not perceived.

Because she cannot
find an appropriate
strategy for interac-
tion.

“What now?” The user does not know what to do next. She
wanders around the interface looking for clues
to restore productive communication with the
sytem. She inspects menus, dialog boxes, etc.
without knowing exactly what she wants to
find or do. The evaluator should confirm if the
user knew what she was searching (“Where is
it?”), or not (“What now?”).

Table 3.3: Temporary failures: (1) user’s semiosis may be momentarily halted

Lastly, the third group of temporary failures corresponds to the user’s

attempt to understand the designer’s deputy’s illocution, by exploring meta-

communication explicitly or implicitly, or by autonomous sense-making. Table

3.5 lists the third group of temporary failures.

Temporary failures, as suggested by their name, may be in effect only for a

short period of time, being circumvented by user’s continuous interpretations of

the metacommunication message. However, successful occurrences of this type

of failure may hinder user’s sense-making in ways that compromise interaction,

leading to complete failures.

The classification of communicative failure will be further referenced in

chapter 5, when discussing the results of the empirical studies.

3.1.11
Semiotic Engineering in the context of APIs

The previous topics in this chapter provided an overview of Semiotic

Engineering’s foundations and its main concepts . In this subsection, we discuss

why the theory is suited to investigate APIs, how it applies to this kind of study

and the nature of potential findings. The goal is to provide an understanding of

the motivation and benefits of the methodology developed during the research

work described in chapter 4.

As previously discussed, software is an intellectual artifact because it

provides a linguistic encoding of a particular solution to a perceived problem.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 47

Temporary failures: (2) user realizes her intended interaction is wrong
Distinctive
feature

Tag Illustrative symptoms

Because it is
uttered in the
wrong context.

“Where am I?” The user is telling things to the system that
would be appropriate in another context of
communication. She may try to select objects
that are not active or to interact with signs
that are output only.

Because her expres-
sion is wrong.

“Oops?” The user makes an instant mistake but imme-
diately corrects it. The “Undo” operation is a
typical example of this tag.

Because a many-
step conversation
has not caused the
desired effects.

“I can’t do it this
way?”

The user is involved in a long sequence of op-
erations, but suddenly realizes that this is not
the right one. Thus, she abandons that se-
quence and tries another one. This tag involves
a long sequence of actions while ”Oops!” char-
acterizes a single action.

Table 3.4: Temporary failures: (2) user realizes that she must reformulate
illocution

It also represents the designer’s understanding of both the problem and its

solution. A user, in order to benefit from this solution, has to engage in a ‘lin-

guistic contract’ with the designer. However, as already mentioned, this com-

munication involves the use of artificial languages, pragmatically more limited

than natural languages. In addition, one of the interlocutors – the designer’s

deputy – has limited semiotic capabilities, since it is equivalent to a snapshot

of the designer’s semiosis, encoded in a one-shot metacommunication message.

Therefore, these communication processes (designer-to-user metacommunica-

tion and user-system communication) are complex phenomena posing import-

ant pragmatic challenges to their investigation, which are objects of study for

Semiotic Engineering.

Traditionally, Semiotic Engineering has focused on the study of interact-

ive interface languages in HCI contexts. Recently, the theory has been used in a

larger context to encompass other types of language (e.g. programming) which,

just like interface languages, carry the logic and design intent of those who cre-

ated the language, API or program. Programming interfaces, when compared

to visual interactive interfaces, are composed by elements of lower abstraction

levels, but with the potential to be combined in multiple and complex ways.

From a semiotic perspective, visual interface languages consist of a

rich signification system, providing a great variety of signs that represent

potentially complex abstractions to be combined in the form of an interactive

interface. In contrast, programming languages and APIs usually consist of a

smaller set of signs, but offering great flexibility and allowing for complex

combinations to provide an unlimited number of new abstractions and signs

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 48

Temporary failures: (3) user seeks to clarify the designer’s deputy’s
intended signification
Distinctive
feature

Tag Illustrative symptoms

Through implicit
metacommunica-
tion.

“What’s this?” The user does not understand an interface sign
and looks for clarification by reading a tool tip
or by examining the behavior of a sign.

Through explicit
metacommunica-
tion.

“Help!” The user explicitly asks for help by accessing
“online help,” searching system documenta-
tions, or even by calling the evaluator as a
“personal helper.”

Through autonom-
ous sense making.

“Why doesn’t it?” The user insists on repeating an operation
that does not produce the expected effects.
She perceives that the effects are not pro-
duced, but he strongly believes that what she
is doing should be the right thing to do. In
fact, she does not understand why the inter-
action is not right.

Table 3.5: Temporary failures: (3) user studies the designer’s deputy’s illocution

(including the ones that compose interactive interfaces).

According to Tanaka-Ishii (71), there are four kinds of signs in computer

programs: literals, operators, reserved words and identifiers. The first three

types belong to the language system definition, and programmers only utilize

them. Conversely, identifiers are mostly defined by the programmer, who

articulates them in a variety of ways to represent in code the various entities

that compose her solution to a specific problem. To the ‘mechanic’ interlocutor

(the computer), the meanings encoded in these identifiers’ are not relevant,

since they only check the syntactic and semantic of identifiers with respect to

the program structure, not considering the vocabulary from natural languages.

In contrast, these identifiers are of great value to the human interlocutors’ (the

programmer included), since they are a powerful resource to signify the intent

encoded in the program.

In her semiotic approach to programming, Tanaka-Ishii also proposes

three levels of semantics for the interpretation of identifiers:

– Computer hardware level: an identifier represents a memory address and

a pattern of bits of associated information stored in this address;

– Programming language level: identifiers at this interpretation level may

represent the definition and use of entities in a program. At this level,

there are two additional layers of interpretation: a) layer of type, defining

the kind of data it may be associated with; and b) layer of address, in a

sense that is analogous to the hardware level;

– Natural language level: identifiers usually represent lexical elements from

natural languages, and as such, use the same vocabulary. This allows

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 49

programmers to encode meanings in the program to be interpreted by

other programmers, herself included. According to the author, “since

identifiers are borrowed from natural language, they are considered

subject to normal semiotic analysis of terms in natural language.”

Identifiers play a key role in the API programming context, since they

are a powerful resource for API designers to signify their intent behind the

interface of a software artifact. Assuming that in most cases API users don’t

read an API’s source code in order to use its affordances (because they can’t,

don’t want or need to it), the interface specification represents the ‘window’

that enables users to communicate with the API. The syntactic specification

of API operations using the underlying programming language is the only

artifact that is surely available to users, and the identifiers involved (names,

types, parameters, etc.) are key resources to communicate design intent to

users.

In addition to the kinds of signs in programming languages mentioned

earlier, the classification of signs from Semiotic Engineering may also be

interpreted in the context of APIs. For instance, static signs comprehend

mostly the same kinds of signs listed by Tanaka-Ishii: literals, operators,

reserved words and identifiers. Their representation is persistent even when no

‘interaction’ occurs. They encompass signs from the API and the programming

language.

Dynamic signs can be interpreted as the ones that result from ‘user

interaction’, i.e. execution of the API’s operations. They consist of return

values, error messages, exceptions, side effects, and other observed behavior

that derives from using the API (the absence of signs may also be considered

a dynamic sign itself).

Metalinguistic signs, just like in interactive interface languages, represent

other static, dynamic or metalinguistic signs. The most evident example in the

case of APIs and programming languages is documentation. However, it may

also include other instances like comments, metalevel language elements (e.g.

Java annotations), contract specifications, computational reflection resources,

and so on.

The design of interfaces (programming included), as seen, involves the

articulation of a number of signs to encode the intent that motivates its

construction (in the problem and solution spaces). One of the envisioned

advantages of a semiotic view of interface languages is the fact that the signs

composing an artifact are available to be interpreted, independently of the sign

producer’s intent. Therefore, if a researcher knows the actual intent behind

these signs, and is able to collect evidence of the consumer’s interpretation of

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 50

the signs, then she may identify existing mismatches in this communication

process.

When compared with visual interfaces, programming interfaces show

differences in the nature of users’ interaction. API ‘interaction’ consists of

writing code in the corresponding programming language to call an API’s

services, passing required parameters and satisfying its preconditions. However,

there is a ‘gap’ in the time between this preliminary interaction with its

actual effects: results only occur after executing the program, which may

also involve a compilation step. Abstracting from the details of supporting

tools like interpreters, compilers and runtime environments, we may view API

interaction as the iterative cycle of writing code that calls API’s operations and

executing the program to obtain results. Dynamic signs occur in the second

part of the interactive cycle, as a resulting effect of calling the operations,

which may include exceptions, returned values, side effects, and so on.

Designer-to-user metacommunication, in the API context, occurs through

the articulation of the static, dynamic and metalinguistic signs, as described.

Therefore, in order to investigate the pragmatic aspects that influence this

type of communication process, it is imperative to adopt a ‘holistic’ approach

to APIs, encompassing the different signification systems and kinds of signs

used in this conversation. This means that the design of APIs should con-

vey coordinated and consistent messages in the different codes and channels

involved, in order to achieve effective metacommunication. Conversely, the

evaluation of API communicability should also be based on a comprehensive

analysis of its various components: formal language specification, natural lan-

guage documentations, models, runtime behavior, and other potential sources

of signs.

Semiotic Engineering offers to designers the necessary support to study

and analyze users and their reactions with respect to the proposed artifact. In

this context, it also provides the opportunity for designers to study, analyze

and make decisions about their own communicative behavior and strategies,

which makes it an essentially reflective theory. As a consequence, the theory

places designers in its ontology in a position as important as the users’.

The reflective nature of Semiotic Engineering helps designers in the

development of a deeper understanding of the problem and the solution to

be encoded in the design of an artifact. As a consequence, the theory may be

used to produce ‘epistemic tools’, which are “not used to yield directly the

answer to the problem, but to increase the problem-solver’s understanding of

the problem itself and the implications it brings about” (22). This type of tool

addresses the problem’s space and nature, and also the restrictions to potential

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 51

solutions. This is an envisioned benefit of using Semiotic Engineering as the

theoretical foundation for investigating APIs, since supporting designers to

develop greater awareness and comprehension about the complexities of this

phenomena may contribute to more effective API design and use.

In contrast, the inherently non-predictive nature of Semiotic Engineering

theory constrains the possibility of a positivist approach to investigating APIs,

which would pursue cause-effect relations in the context of API design and

use. Therefore, adopting the theory as the ‘lens’ to investigate API design and

evaluation does not allow us to expect findings with predictive nature.

3.2
Cognitive Dimensions of Notations framework

The Cognitive Dimensions of Notations framework (CDNf) (27) was con-

ceived to help in the assessment of cognitive aspects associated with represent-

ations like, for instance, programming languages and APIs. A brief definition

for the framework is “a broad-brush evaluation technique for interactive devices

and for non-interactive notations” (84). It also provides a vocabulary to de-

scribe and discuss cognitive impact associated with the use of an artifact,

offering a comprehensible framework that, according to the authors, can be

used by non-specialists. In addition, one of its goals is to organize the design

space from a cognitive perspective, and expose the potential consequences of

certain design decisions in terms of trade-offs among dimensions.

The cognitive dimensions (CDs) usually apply to the analysis of scenario-

based tasks, associated with various types of activities categorized as follows:

incrementation, transcription, modification, exploratory design, searching and

exploratory understanding. Among these categories, incrementation, explorat-

ory design and understanding frequently occur in a programming context.

The CDNf has been successfully applied to evaluate the design of artifacts

in many different contexts. For instance, the CDs motivated studies to evaluate

the usability of programming languages (32), visual languages (84), middleware

(35), and APIs (14, 41, 44).

Despite its suitability to evaluate a variety of notations and devices, we

refer to the CDNf in this section with respect to its application in the context

of APIs and programming languages.

3.2.1
List of dimensions

The core set of cognitive dimensions includes 14 of them. Some of these

dimensions are self-explanatory, and others deserve further discussion. Table

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 52

3.6 summarizes each of the core dimensions (84, 85).

Cognitive dimension Description

Abstraction Types and availability of abstraction mechanisms
Closeness of mapping Closeness of representation to the domain
Consistency Similar semantics are expressed in similar syntactic forms
Diffuseness Verbosity of language
Error-proneness The notation invites mistakes and the system gives little

protection
Hard mental operations High demand on cognitive resources
Hidden dependencies Important links between entities are not visible
Premature commitment Constraints on the order of doing things
Progressive evaluation Work-to-date can be checked at any time
Provisionality Degree of commitment to actions or marks
Role expressiveness The purpose of an entity is readily inferred
Secondary notation Extra information in means other than formal syntax
Viscosity Resistance to change
Visibility Ability to view entities easily

Table 3.6: Cognitive dimensions of notations

The abstraction dimension refers to the minimum and maximum levels

of abstraction that are available or required from a notation. Regarding

programming languages, for instance, they can be characterized in terms of the

abstract dimension as: 1) ‘abstraction-hungry’, if the user is required to provide

a number of abstractions in order to be able to use it at a starting level; 2)

‘abstraction-tolerant’, if it allows the creation of new abstractions by users; and

3) ‘abstraction-hating’, if it does not allow to create new abstractions. From

this classification, we can see that this dimension may contribute positively

or not to a language’s usability. In addition, the creation of new abstractions

may affect negatively other dimensions like hidden dependencies or premature

commitment, as discussed later when describing these dimensions.

The closeness of mapping dimension describes the distance between a

‘problem’ and its ‘solution’ as provided by a notation. For instance, a language

that offers sophisticated mathematical primitives provides more closeness of

mapping to solve mathematical problems than languages that do not have

such features. This dimension is also influenced by abstraction, since higher

level abstractions may provide a more direct mapping to a domain, increasing

the language’s closeness of mapping to accomplish tasks related to a specific

domain.

Consistency is a somewhat intuitive dimension: when using a consistent

language, the user should be able to infer some of its features by knowing other

parts of the language. This avoids ‘surprises’ when dealing with a language,

possibly reducing the language’s error-proneness.

Diffuseness describes situations in which the user needs to write more

than necessary or expected to achieve a certain goal while using a language or

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 53

notation. For instance, Cobol may be regarded as an example of a diffuse

programming language, since it requires lots of text writing in order to

accomplish basic tasks.

Error-proneness is associated with a high probability of errors when using

a language, because it does not offer mechanisms to protect the user from

mistakes or lapses. An example of error-proneness in a programming language

is the possibility of inadvertent use of semicolons after for or while statements

in C, which is a common source of errors among novice programmers.

The hard mental operations dimension describes language features which

impose a high cognitive load on users in order to use them effectively. To

illustrate this dimension, we may refer to languages that allow the programmer

to iterate over an array, for example, by using statements with a ‘foreach’

semantics, returning each element of the collection at a time, without having

to control each aspect of the iteration. This involves less cognitive resources

to express when compared to traditional ‘for’ and ‘loop’ statements, which

require that users specify a counter to index the array, initialize and increment

its value, while checking its value against the array bounds. The ‘foreach’-

like language construction contributes to reduce the ‘hard mental operations’

dimension in most cases.

The hidden dependencies dimension refers to cases in which two or more

entities in a program are mutually dependent, but these dependencies are not

explicit. A well-known example of this dimension occurs in spreadsheet cells: it

is not always clear that a cell is a dependency to other cells, and that changing

its value causes changes to these other cells’ values. In the case of programming

languages, allowing to share state between independent units of execution, for

instance, may be the source of hidden dependencies in code. It should be also

noted that the creation of new abstractions may increase hidden dependencies

between the ‘abstracted’ entities, since higher level features usually depend on

lower level entities that may be somehow related.

Premature commitment occurs when a user has to make persistent

decisions before all required information is available. For instance, if a UML

modeling application strictly enforces the underlying model consistency rules

all the time, it does not allow users to ‘sketch’ a drawing of a model without

satisfying all the mandatory conditions. Therefore, this application imposes a

situation of premature commitment to its users. In the context of programming

languages, an example of premature commitment occurs when a user needs to

create an object from a class whose constructor requires a list of parameters

which are not always known or available at the moment of object creation.

The creation of a new abstraction may increase premature commitment when

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 54

it forces the user to make early decisions in order to be able to use it.

The progressive evaluation dimension describes the ability to check the

current state of work, even if only partially complete. An illustrative example

of this dimension occurs with respect to dynamically versus statically typed

programming languages: in general, it is easier to evaluate the current state

of an incomplete program when using a dynamically typed language, which

contributes positively to this cognitive dimension.

Provisionality refers to the notations support to ‘sketching’ or recording

design options, even if there are constraints on the order of doing things

(premature commitment). This dimension may also describe the possibility

expressing parts of an object that is not fully defined yet. In object-oriented

programming, for instance, an example of the provisionality dimension is the

ability to create an abstract method in a class that will only be defined when

creating a concrete subclass that implements it.

Role expressiveness refers to how easy it is to infer an entity’s features

and goals. For instance, PHP provides a function named dl(), a poor naming

choice which hinders its role expressiveness2. The secondary notation dimen-

sion may contribute to increase a notation’s role expressiveness, as does a

higher abstraction level. Closeness of mapping may also affect positively this

dimension, and vice-versa.

Secondary notation denotes the ability to express information using syn-

tax that escapes the formal notation. Examples of this dimension includes the

use of comments or indentation to add meaning to the representation. In the

case of visual languages, the spatial layout is also a form of secondary notation

commonly explored by expert users to represent additional information.

Viscosity metaphorically refers to the physical properties of fluids that

determine its ‘resistance to change’. In the context of programming languages

or applications, for example, it means the amount of work needed to accomplish

a certain modification task. Text editors, for instance, usually offer a search-

and-replace abstraction that allows users to perform a number of changes with

less work. This example also illustrates how the abstraction dimension may

contribute to reduce viscosity. In addition, aspect-oriented programming may

be regarded as a technique with the potential to reduce viscosity, since cross-

cutting aspects are implemented in a centralized form. Therefore, a program’s

features implemented as aspects may be considered less ‘viscous’.

Lastly, the ‘visibility’ dimension corresponds to how difficult it is to

identify or access an object or piece of information. For instance, if a program’s

feature is only accessible by going deeply into a sequence of screens or options,

2The dl() function dynamically loads a PHP extension.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 55

it has low visibility. In addition, if a language or API ‘hides’ information about

a feature in documentation pages that are accessible only after navigating

through various intermediate steps, it is also an example of low visibility.

3.2.2
Cognitive dimensions and APIs

Differently from Semiotic Engineering, the CDNf has a long tradition of

supporting usability evaluation of APIs. The first well-known studies using the

framework to evaluate programming languages and APIs have been developed

at Microsoft by Steven Clarke and his group(32, 14). These studies introduced

a new approach to investigating API design and provided interesting insights

about the potential cognitive impact caused by specific API features.

In their studies, the group at Microsoft developed their own set of cog-

nitive dimensions, mostly based on the original dimensions with some adapt-

ations. Their proposed adaptation included the following list of dimensions:

– Abstraction Level: what are the minimum and maximum levels of ab-

straction exposed by the API, and what are the minimum and maximum

levels usable by a targeted developer;

– Learning Style: what are the learning requirements posed by the API,

and what are the learning styles available to a targeted developer;

– Working Framework: what is the size of the conceptual chunk needed to

work effectively;

– Work-Step Unit: how much of a programming task must/can be com-

pleted in a single step;

– Progressive Evaluation: to what extent can partially completed code be

executed to obtain feedback on code behavior?

– Premature Commitment: to what extent does a developer have to make

decisions before all the needed information is available?

– Penetrability: how does the API facilitate exploration, analysis, and

understanding of its components, and how does a targeted developer

go about retrieving what is needed;

– API Elaboration: to what extent must the API be adapted to meet the

needs of a targeted developer?

– API Viscosity: what are the barriers to change inherent in the API, and

how much effort does a targeted developer need to expend to make a

change;

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 56

– Consistency: once part of an API is learned, how much of the rest of it

can be inferred?

– Role Expressiveness: how apparent is the relationship between each

component and the program as a whole?

– Domain Correspondence: how clearly do the API components map to

the domain? Are there any special tricks?

From the above list, we can see that some of the original dimensions

have been kept (e.g. premature commitment), others have been renamed (e.g.

‘closeness of mapping’ to ‘domain correspondence’), and others have been

created (e.g. ‘working framework’). According to the authors, these changes

have been proposed to better accommodate their requirements at Microsoft,

and also to adopt a vocabulary that would be more easily interpreted by their

team. In this research, we refer to their classification as an example of extension

and reinterpretation of the cognitive dimensions, but keep with the original

terminology and conception of the CD’s as proposed by Green.

Despite the successful use of the CDNf in the evaluation of programming

languages, APIs and other kinds of notations and devices, the framework also

has its shortcomings. For instance, as Petre states: “our biggest struggle centred

on scope: where does the notation end, and how much does a CDs analysis

include? Many of the big unresolved issues concern not just dimensions of

notation, but also cognitive issues of notations in use, and of their context of

use” (86). In her work, she proposes the use of facet analysis to compensate

for some of these issues.

One of the envisioned advantages of using the CDNf under a Semiotic

Engineering perspective is that, together, they enable the analysis of a notation

in a more completely specified context of use, because it includes explicit

intentionality and communication aspects. This provides a richer situated view

of the notation with respect to the cognitive issues involved, as opposed to

a generic unsituated analysis of the notation by itself. Therefore, a combined

semiotic and cognitive approach has the potential to circumvent the limitations

of an isolated adoption of the CDs, as identified by Petre.

Next chapter illustrates how the CDNf has been used together with

Semiotic Engineering in the definition of the research method to perform the

empirical studies. The results of the research studies are detailed in chapter 5.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

4
Methodology and Empirical Studies

This chapter provides an overview of this thesis’ research design and

methodological approach, based on the concepts and theoretical support

described in chapter 3. It also discusses the evolution of the research and

its main phases, enabling a more detailed comprehension of the steps that

conducted to the results to be introduced and analyzed in chapter 5.

4.1
Research approach

In order to discuss the research approach, we begin by recalling the

research question introduced in chapter 1: How communicative and cognitive

aspects of the design of programming languages and APIs influence their usage

by programmers, leading to errors or difficulties in writing and understanding

code ?

This is a research question of an ‘open’ nature, since it addresses the

inquiry of general knowledge about an object of study, aiming to achieve a

deeper comprehension of a class of problems. Due to its nature, the proposed

research question is suited to a qualitative approach. It contrasts with ‘closed

questions’, those which aim to test a specific hypothesis, searching for answers

regarding the effectiveness or the efficiency of a method or technique to solve

a specific problem, for example. Closed questions are typically addressed by a

quantitative approach to research, based on statistic studies over large samples

of collected data, in order to confirm an hypothesis and allow predictive results

from studies.

Qualitative research methods, in contrast, search for a deeper under-

standing of observed phenomena. Researchers are an integral part of qualitat-

ive inquiry, since they confer meaning to data collected and analyzed. As such,

subjective interpretation is not only allowed, but also expected. Researchers

bring their background, biases and reflections to the investigation process, as

qualitative research inherently deals with the meanings that a person (or a

group of people) extract from a human perspective of the investigation.

In qualitative research, theory commonly works as the ‘lens’ that provides

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 58

ontological and epistemic support to the collection and analysis of data. It

provides guidance to researchers in determining what should be analyzed,

how the analysis should be performed and the nature of the meanings that

may be extracted from data. In general, the researcher performs an inductive

analysis of data, going from particular details from observed evidence to more

general themes and findings, in a ‘bottom-up’ approach. Therefore, it usually

involves raw data collection from the ‘observed’ environment, like, for instance,

interviews, observations, documents, recordings, images, and so on.

Due to the openness of qualitative research questions, this type of

investigation commonly involves the selection and combination of existing

qualitative methods. Adaptation of selected methods to better fit the problem

in question is also a common practice. The combination and adaptation of

methods can also be regarded as the generation of new methods, that can be

possibly used in other contexts of investigation.

A qualitative research project usually involves an iterative process of con-

struction and refinement of the method utilized by the researcher. The initially

selected method (or combination of methods) determines the early stages of

data collection and analysis and, as the researcher develops a deeper com-

prehension of the observed phenomena, new procedures or techniques may be

added to the process. These cycles are usually associated with stages or phases

of the investigation, which represent the evolution of the researcher’s interpret-

ation process in the direction of providing consolidated findings resulting from

the analysis.

4.2
Research Design

In this section, we discuss the general principles that conducted the

design of the research steps and procedures. The description of the research

design strategy follows a qualitative approach, as explained in the previous

section. As such, the discussion here is restricted to principles and procedures

for this type of approach.

The design of a research project encompasses the definition of its main

components: questions, goals, methods, theoretical framing, procedures, re-

sources and so on. Among the procedures, the researcher has to determine the

steps for data collection, recording, analysis and interpretation. In addition,

the research strategy should also involve activities regarding its reliability and

validity.

According to Creswell (87), qualitative validity involves employing pro-

cedures for checking for the accuracy of the findings, like triangulation, member

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 59

checking, rich descriptions, use of negative or discrepant information, among

others. Reliability procedures aim to check mostly for consistency among a

group of researchers or across different research projects. Some examples of re-

liability procedures include cross-checking of transcripts and analysis (coding)

among researchers, coordinated communication between team members, and

precise documentation of research steps.

In the context of this thesis’ research design, the main procedure for

data collection was a systematic search of bug reports, as mentioned in

chapter 1. The goal of this procedure was to collect empirical data that could

possibly offer evidence of communicative breakdowns. In order to increase the

probability of finding bug reports with significant breakdowns, the collection

strategy defined was to search for bug reports classified by evaluators as ‘not

a bug’ or ‘not an issue’. The classification of a reported issue as ‘not a bug’ is

a potential symptom of a mismatch between the designer’s intent behind the

software artifact and its interpretation by users.

As to data recording, the nature of empirical data collected facilitated

this procedure, since it consisted mostly of textual data from Web sites. The

languages selected as sources of bug reports (Java and PHP) offer public Web

search engines for their bug tracking system database. The initial collection

and recording of raw data involved the inspection of bug reports’ contents. if

the bug report looked interesting from the perspective of the research, part

of its content was copied a text file, as a quick method to mark it for further

analysis in the next iteration over data. A second step of analysis involved a

more structured analysis and organization of data in spreadsheets, as will be

detailed in section 4.3.

Data analysis and interpretation procedures are the ‘core’ of qualitative

inquiry, since it usually involves a number of iterations in which the researcher

reflects on collected data and partial results. Creswell suggests a bottom-up

approach for data analysis in qualitative research which consists of seven

‘layers’, as depicted in figure 4.1. Despite the fact that the figure suggests

sequential procedures, the author states that they are interrelated and not

always visited in the order presented.

Data analysis procedures carried out in this research followed a similar

approach to Creswell’s model. They permeated the research process’s itera-

tions, mixing various activities with different levels of intensity over the course

of the studies.

In order to provide an overview of the organization of research activities,

we refer to a representation proposed by Brandão in the C&A4Q model (88), a

theoretical Capture & Access model targeted at supporting the registration of

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 60

Raw data

Organizing and preparing data for analysis

Reading through all data

Coding the data

Themes Description

Interrelating themes/descriptions

Interpreting the meaning of themes/
descriptions

Figure 4.1: Qualitative data analysis procedures (Creswell)

qualitative research procedures applied to HCI. This model proposes the char-

acterization of qualitative procedures in two different contexts: the researcher’s

context, in which ‘internal’ activities are carried out by the researcher in the

actual development of the research; and the scientific community’s context,

where part of the qualitative reliability and validity procedures may take place.

Figure 4.2 depicts the top-level organization of the procedures carried out in

the research.

The left part of figure 4.2 shows the researcher’s context and the internal

procedures of qualitative analysis and validation. The inner box shows the

procedures of data collection and analysis, organized in iterative phases that

follow the evolution of the method over the course of the research. In the

right side of the researcher’s context, we can see the validity procedures

carried out along with the phases of collection and analysis: triangulation and

negative/discrepant case analysis. The ‘scientific community context’ box in

the figure shows the validity procedures carried out with the participation of

other members from the Semiotic Engineering Research Group (SERG): peer

debriefing and member checking. These procedures will be explained in section

4.3.

The first phase in the iteration chain of data collection and analysis con-

sisted of the initial selection, collection and quick analysis of bug reports. They

have been collected from bug tracking systems and their basic information was

organized in text files for further analysis in the second phase.

In the sequence, phase 2 involved the first systematic classification of

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 61

Internal qualitative analysis and validation

Iteration chain
(Data collection and analysis)

Phase 1
Initial data collection,
selection and analysis

Phase 2
Systematic classification and

analysis

Phase 3
Refinement of classification

and analysis

Phase 4
Final selection, analysis and

consolidation of results

Triangulation

Negative /
discrepant case

analysis

Validity
procedures

External qualitative
validation

Peer debriefing

Scientific community context

Researcher context

Analysis
procedures

Figure 4.2: Overview of research procedures

bug reports, and also a refinement of the initial reports’ selection in order to

eliminate those that did not provide evidence as required by the investigation

criteria.

After completing the first systematic classification, phase 3 addressed the

refinement of the initial classification, adding new aspects to the categorization

process and changing some interpretation aspects of existing criteria.

The final stage of the research comprehended further selection of bug

reports for deeper analysis and classification of a more representative dataset.

The goal was to focus on a more significant dataset and identify existing

relations and themes among these reports. New categories have been added

to the classification, and a final consolidation of results has been carried out

to provide the findings described in chapter 5.

We discuss the research phases and procedures in greater detail in the

next section.

4.3
Empirical studies

This section provides details about the empirical studies performed

during the research project, its main phases and activities. It also describes

the procedures carried out with the goal to collect and analyze data, leading

to the results detailed in chapter 5. As introduced in the previous section,

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 62

the research work comprehended four phases of iterations consisting of data

collection, analysis and registration of results. We discuss details about each

phase’s activities, and then conclude with considerations about the conducted

research in section 4.4.

4.3.1
Phase 1 – Initial data collection, selection and analysis

Phase one started with a ‘broad-brush’ inspection of a large number of

bug reports from the PHP1 and Java23 bug tracking systems. As previously

mentioned in chapter 1, these languages have been chosen as the primary

source of empirical data due to their popularity and the availability of a large

number of bugs registered in their issue tracking systems, including almost two

decades of each language’s history. Additionally, the availability of source code

in both cases contributed to the decision of choosing these languages, since it

would allow a deeper investigation of the APIs’ issues and evolution over time,

if necessary.

The initial search for common issues regarding the languages and their

APIs encompassed the inspection of their ‘change log’ between versions,

especially looking for ‘deprecated features’, which could provide indication

of potential topics of interest for the research. In this context, the website for

PHP’s request for comments (RFCs)4 is an interesting source of information

about major changes to the language and its APIs. These RFCs’ discussions

provide evidence of the rationale behind changes that occurred over the

course of the language’s evolution. These changes frequently resulted in the

‘deprecation’ of features with negative impact on users, either by causing

misunderstandings or by being rejected by the community of programmers.

The collection of raw data involved a number of sessions for the inspection

of bug reports. Systematic searches have been performed in each language’s

issue tracking systems, filtering by reports classified as ‘not a bug’ or ‘not an

issue’, depending on the adopted terminology. In both cases, search results have

been sorted by bug ID in ascending order, which also implied a chronological

order of their creation. As previously explained, the filter’s goal was to obtain

evidence of mismatches between design intent and users’ interpretations and/or

expectations, which could be associated with communicative issues.

1https://bugs.php.net
2https://bugs.openjdk.java.net
3The ‘openjdk’ bug database provides the complete history of bugs for the official Java

distribution, including the period preceding its change into an open-source project, formerly
maintained by Sun Microsystems and currently by Oracle Corporation.

4https://wiki.php.net/rfc

https://bugs.php.net
https://bugs.openjdk.java.net
https://wiki.php.net/rfc
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 63

The collection process encompassed the inspection of 6k bug reports for

each language, divided in two groups: the oldest 3k bug reports, followed by

the 3k newest bug reports (as of mid-2014), resulting in the scanning of 12k

bug reports (‘not a {bug,issue}’). The goal for the division in groups of oldest

and newest bugs was to identify possible variations of common issues over the

course of language evolution. In order to illustrate the nature of data inspected,

figures 4.3 and 4.4 depict bug reports from PHP5 and Java6, respectively.

Add Comment Developer Edit

Comments Changes Git/SVN commits Related reports

php.net | support | documentation | report a bug | advanced search | search howto | statistics | random bug | login

go to bug id or search bugs for

Bug #65362 strcmp null return missing from docs.
Submitted: 2013­07­30 23:36 UTC Modified: 2013­08­18 20:32 UTC

From: atli dot jonsson at ymail dot com Assigned:
Status: Not a bug Package: Scripting Engine problem

PHP Version: 5.5.1 OS:
Private report: No CVE­ID:

 [2013­07­30 23:36 UTC] atli dot jonsson at ymail dot com

Description:
‐‐‐‐‐‐‐‐‐‐‐‐
strcmp, strncmp, strcasecmp and strncasecmp will all return NULL when either
string parameter is of a type that is invalid for string conversions, like Arrays,
Objects and Resources.

However, the docs make no mention of this fact. (Aside from a comment.) As the 0
value returned for equal strings, and NULL returned for invalid comparisons, are
equal when compared in a non‐strict manner, this can lead to unexpected behaviour.

There is a warning issued, but without clarification the above is still in no way
obvious.

Test script:
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
<?php
$arr = [];
$str = "PHP is awesome!";

if (strcmp($arr, $str) == 0) {
 echo "Equal!"; // Ends up here.
}
else {
 echo "Not equal!";
}

Patches

Add a Patch

Pull Requests

Add a Pull Request

History

 [2013­08­18 07:50 UTC] yohgaki@php.net
‐Type: Documentation Problem
+Type: Bug
‐Package: Documentation problem
+Package: Scripting Engine problem

 [2013­08­18 07:50 UTC] yohgaki@php.net

I changed bug type since this is in Zend/zend_builtin_functions.c.

Shouldn't it raise error for arrays? Currently, it simply returned.

/* {{{ proto int strcmp(string str1, string str2)
 Binary safe string comparison */
ZEND_FUNCTION(strcmp)
{

View

All

Figure 4.3: Example of PHP bug report

Despite the large number of bug reports inspected, only a small per-

centage of the initial set has been selected, since the goal was to analyze in

deep detail only bug reports that could provide quality evidence for the study,

considering the communicative perspective of the approach. Therefore, the fol-

lowing criteria has been adopted to discard most items during the initial bug

report database scan:

– bug reports containing incomplete or inadequate information (invalid

reports);

5https://bugs.php.net/bug.php?id=65362
6https://bugs.openjdk.java.net/browse/JDK-6645267

https://bugs.php.net/bug.php?id=65362
https://bugs.openjdk.java.net/browse/JDK-6645267
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 64

Details

Labels:

Type: Status:

Priority: Resolution:

Affects Version/s: Fix Version/s:

Component/s:

Subcomponent:

CPU:

OS:

 Bug Closed

 P4 Not an Issue

1.4.2 None

core­libs

webbug

java.util:i18n

x86

windows_xp

Description
FULL PRODUCT VERSION :
java version "1.3.1_04"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1_04­b02)
Java HotSpot(TM) Client VM (build 1.3.1_04­b02, mixed mode)

ADDITIONAL OS VERSION INFORMATION :
MS Windows XP professional 2002 Service pack 2

A DESCRIPTION OF THE PROBLEM :
We have created two object of GregorianCalender class

 GregorianCalendar starttime1 = new GregorianCalendar(2007,11,1,13,00);

 GregorianCalendar starttime1 = new GregorianCalendar(2007,10,31,13,00);

Both above oject gives same values in milliseconds using function getTime()

REPRODUCIBILITY :
This bug can be reproduced always.

Activity

Yuka Kamiya added a comment ­ 2007­12­25 21:17
BT2:EVALUATION

This doesn't seem to be a bug. In lenient mode which is default, both dates are December 1st 13:00 of 2007 (because month is 0­based
here). As a result, it' natural that both have the same millisecond value.

People

Vote (0) Watch (0)

Assignee:

Reporter:

Yuka Kamiya

Yuka Kamiya

Dates

Created:

Updated:

Resolved:

Imported:

Indexed:

2007­12­24 18:27

2010­07­29 15:16

2007­12­25 21:17

16/Sep/12 10:21 AM

18/Jul/12 5:32 AM

All Comments Work Log History Activity

JDK JDK­6645267

GregorianCalendar getTime() return incorrect value

Figure 4.4: Example of Java bug report

– bug reports that clearly revealed user’s lack of knowledge about program-

ming or other computer science concepts (e.g. floating point representa-

tion and operations);

– ‘old’ bugs that had already been fixed in versions of the language

available at the time of the report;

– issues associated with the language’s tools and runtime environment;

– issues associated with language features which are too specific (e.g. Java

GUI classes);

– issues associated with related technologies or applications (e.g. Apache

web server);

– users’ mistakes when reporting the bug, in which the error was soon

acknowledged by further user comments;

– reports related to inherent limits of the technology;

– issues closed without justification by the evaluator;

– performance-related issues;

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 65

– confusing bug reports that could not be clearly interpreted.

During the first inspection of raw data, information about selected bug

reports has been copied into a text file, including bug ID, date and title, for

further analysis. In addition, interesting excerpts and annotations were added

to the registration of the bug report in the text file. The first data collection

resulted in 393 PHP bugs and 289 Java bugs selected for further investigation

and initial classification.

4.3.2
Phase 2 – Systematic classification and analysis

In this phase, the resulting set of bug reports selected from phase 1 went

through the first iteration of systematic analysis. The annotated text files (one

for each language) served as the basis for a new inspection of each bug selected.

This time, information about bug reports was stored in a more structured way

by using a spreadsheet application.

For each bug report selected in the first phase, the report’s content was

revisited, which also resulted in a new selection process. The second round

of analysis, influenced by a refinement in the selection criteria, resulted in

the elimination of a number of bugs from the first set. As such, the resulting

spreadsheets at the end of this phase contained 304 PHP bugs and 161 Java

bugs.

The initial systematic analysis of bug reports comprehended the iden-

tification of users’ breakdowns, in the attempt to classify the type of failure

associated with the report (as seen in chapter 3). The first approach involved

the classification of bug reports with respect to existing categories from Semi-

otic Engineering, including the type of communicative failures and the meta-

communication template components. In addition, a categorization of topics

(coding) has been carried out to identify recurrent themes in the reports (as

illustrated in the approach depicted by figure 4.1). The goal was to identify

communication failures associated to users’ reception of the designer’s mes-

sage. After the classification of failures, the next step was the identification

of the metacommunication template components associated with the failures,

describing which parts of the designer’s intent encoded in the artifact’s design

could have affected the user’s interpretation of its meanings. Chapter 5 provides

a more detailed explanation about this classification procedure.

The first systematic classification and analysis of collected data resulted

in storing the following information in spreadsheets, for each bug selected:

– bug ID;

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 66

– creation date;

– title;

– short description highlighting the main aspects of the situation involved;

– selected excerpts from users’ or evaluators’ discourses;

– related links (other bug reports, related documentation, user groups’

discussions, tutorials, etc.);

– tags: initial coding of main themes involved in the reports;

– API/language: flag indicating if the issue is mostly related to the lan-

guage core or its API/library;

– communication failure classification, based on CEM method’s tags de-

tailed in 3.1.10;

– metacommunication template components (see 3.1.6);

– cognitive dimensions associated with the issue (see 3.2.1);

– programming concepts associated with the report;

– language-specific features involved in the report;

– API knowledge types: patterns of knowledge for API documentation, as

defined in (64) (see below).

In their work, Maalej and Robillard (64) provide a taxonomy of 12

‘patterns of knowledge’ contained in API reference documentation. According

to the authors, the taxonomy “can be used to help practitioners evaluate the

content of their API documentation, better organize their documentation, and

limit the amount of low-value content. They also provide a vocabulary that can

help structure and facilitate discussions about the content of APIs.” Table 4.1

summarizes the taxonomy proposed by the authors.

In the process of bug report analysis and classification, this taxonomy

for API knowledge types provided conceptual and epistemic support to the

framing of issues described in reports. It also served the purpose of internal

triangulation of the concepts and themes identified during the analysis, provid-

ing an additional element to be considered in the interpretive and reflective

process of qualitative research.

Over the course of the analysis, an additional procedure adopted was

the creation of short programs, in order to check if the language or API

feature worked as described by the user’s report. The code usually consisted

of the example provided by the user, sometimes with additional tests. This

also worked as a validity procedure, since it double checked the quality of

the collected evidence, especially when the report raised doubts about its

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 67

API Knowledge type Description

Functionality and behavior Describes what the API’s functionality or features.
Concepts Explains the meaning of terms or domain concepts used by

the API.
Abstraction Types and availability of abstraction mechanisms.
Directives Directives are clear contracts.
Purpose and rationale Explains the purpose of providing an element or the ra-

tionale of a certain design decision.
Quality attributes and internal
aspects

Describes quality attributes of the API, also known as
non-functional requirements, for example, the performance
implications.

Control-flow For example, describes what events cause a certain callback
to be triggered.

Structure Describes the internal organization of a compound element
(e.g. important classes, fields, or methods) or how elements
are related to each other.

Patterns Describes how to accomplish specific outcomes with the
API, for example, how to implement a certain scenario,
how the behavior of an element can be customized, etc.

Code examples Provides code examples of how to use and combine elements
to implement certain functionality or design outcomes.

Environment Describes aspects not related to the API directly (e.g.,
compatibility issues, differences between versions, etc.).

References Pointers to external documents (hyperlinks, ‘see also’ ref-
erence, standards, manuals, etc.)

Table 4.1: Patterns of API knowledge type

correctness. It also helped to check if the issue had already been resolved

by the language team. In summary, 49 short PHP programs were written to

check issues from bug reports. As to Java, 13 programs were created, including

tests for 32 cases collected from bug reports. Listing 4.1 illustrates one of these

short programs.

Listing 4.1: Example of a PHP short program to check a bug report

<?php

//bug 60650

t ry {
$date = new DateTime (’ 2011−02−31 ’) ;

print $date−>format (’Y−m−d ’) . ”\n” ;

$date = new DateTime (’ 2011−02−32 ’) ;

print $date−>format (’Y−m−d ’) ;

} catch (Exception $e) {
print $e ;

}

During the classification performed in this phase, some issues described

in bug reports have been checked against other sources like, for instance, the

Stack Overflow (SO) Web site7. SO is a public forum for technical questions and

answers, mostly about programming topics. Users can vote for best questions

7http://www.stackoverflow.com

http://www.stackoverflow.com
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 68

and answers, and popular items can be identified by their score and number

of views. As users vote for an answer, it goes ‘up’ in page results.

Actually, the check for topics identified in a bug report usually involved

Google searches for the main terms describing the issue. However, the top

ranked search results frequently included SO’s questions and answers, due

to their popularity and significance to the subject. The main goal of this

type of check was to verify if a bug report’s issue was representative of a

relevant class of problems, concerning the API’s features involved. In the case

of Stack Overflow, a high number of views and ‘upvotes’ for a question or

answer distinguishes ‘popular’ topics from others of less interest.

4.3.3
Phase 3 – Refinement of classification and analysis

The third stage of the research corresponded to refinements in the

classification of bug reports, by revising each bug’s details according to

changes in the categorization criteria. The main goal was to double check the

classification’s consistency and reflect on the evolution of the method and its

findings, deriving from insights acquired during the process of investigation.

The procedures carried out during this phase can be summarized as

follows:

– classification of the nature of the main issue involved (e.g. date and time

operations, etc.);

– separation of excerpts containing user and evaluator discourse, in order

to facilitate the analysis of each part’s arguments and reasoning;

– references and comments about documentation related to the main issues

associated with the report, to support further reasoning;

– creation of a new field to include a more detailed analysis of the report,

with comments about the nature of the problem behind the issue and its

interpretation;

– separation of communicative failures in subcategories (complete, partial,

temporary), and refinement of applied criteria;

– refinements in the classification of cognitive dimensions and metacom-

munication template components.

In addition, this phase involved the recording of a two-hour session of bug

report analysis, through the use of a capture and access system (CAS). This

was part of a cooperation with another PhD research project being carried out

at the time (88), also from a member of the Semiotic Engineering Research

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 69

Group (SERG). Brandão’s research goal was the investigation of a model to

apply capture and access technology to support qualitative research.

The use of the CAS system allowed the simultaneous recording of re-

searchers’ audio and video, also including the screen capture for user interac-

tion with the various applications involved (spreadsheet, Web browser, text

file, operating system console and so on.). The system also allowed the re-

searcher to apply ‘tags’ to the procedures that corresponded to the main steps

of the analysis method. This mechanism enabled easy tracing and recovery of

the most relevant parts from the research session.

The final product resulting from this capturing session was a multimedia

document that served a twofold purpose: 1) it has been used as the basis for

discussion and analysis among SERG members, which generated another CAS

document itself, and worked as a ‘peer debriefing’ validity procedure; 2) it

allowed a reflection about the research process and its procedures, providing

greater awareness about its nature and possible improvements.

4.3.4
Phase 4 – Final selection, analysis and consolidation of results

The final phase consisted of a new selection of bug reports and a more

detailed categorization of their characteristics. A new category has been added

to the analysis in order to characterize the main effects on users that resulted

from API metacommunication, as described later in chapter 5.

In addition, we decided over the course of the investigation to concentrate

on issues more clearly associated with the languages’ APIs, as opposed to

problems deriving from the languages’ basic features. This new perspective

resulted from regarding basic language knowledge a precondition for users to

be able to interpret API metacommunication properly, eliminating bug reports

associated with lack of user’s knowledge about basic use of programming

language. This does not mean that programming languages cannot (or should

not) be the object of a communicative approach to their investigation, but we

decided to focus on the metacommunication aspects of APIs, assuming that

the programming language works as a ‘common ground’ between interlocutors.

Therefore, a new selection of bug reports concentrated on keeping bug

reports clearly related to API issues, resulting on 152 PHP reports and 146 Java

reports. A new round of analysis and validation procedures also investigated

the significance of each report’s main issues, by triangulating with external

sources like Stack Overflow, programming forums, technical references and

code checking tools, which are relevant sources of information about the

‘popularity’ of certain issues. Therefore, bug reports involving topics that could

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 70

possibly reflect isolated cases have been discarded. The final configuration of

selected bug reports comprehended 104 from PHP and 96 from Java (200

reports).

The final refinement in the analysis and classification of bugs has been

supported by the use of an additional tool called Elastic Search8, an open

source document store with full-text search capabilities and sophisticated

aggregation features. This tool allowed more elaborated searches and the use of

data visualization techniques that supported new perspectives on the nature

of collected evidence. This procedure offered new insights and contributed

to improvements in the research work. It also enabled the use of queries to

check the consistency of manually generated data stored in the spreadsheets

(e.g. categorization and tagging). A number of inconsistencies have been

identified and adjusted by using this mechanism, which also worked as a

validity procedure for qualitative research.

This search and analysis process involved the creation of various scripts

to automate the main tasks that were intensively repeated as changes occurred.

Python scripts have been created to index data from spreadsheets (exported

as CSV files) into the Elastic Search (ES) engine. Queries on indexed data

have been performed by using ES’s JSON9-based query language, which also

returns results in JSON format by default. An ES plugin offers a Web interface

that allows easy query execution and analysis of results.

In order to provide better visualization and a more detailed investigation

of results, other Python scripts have been developed to automate ES queries

and data conversion to other formats. For instance, query results have been

converted from JSON to CSV in order to generate charts (illustrated in chapter

5). Other conversions allowed the use of data in more dynamic visualization

mecanisms, based on the D3 (Data-Driven Documents) Javascript library10.

Figure 4.5 illustrates an example of data visualization using D3, which allowed

dynamic navigation of aggregated data to support better reasoning and data

analysis. The picture shows only the ‘top level’ visualization, which allowed

zooming into inner categories by clicking in the corresponding circles. In spite

of being an interesting resource for data visualization, this type of ‘dynamic

chart’ is not appropriate for static visualization in a textual document. For this

reason, chapter 5 provides other types of visualization to support the analysis

of results.

Additionally, shell scripts were used to automate a number of the tasks,

mostly calling Python scripts to index data, perform queries and convert

8http://www.elasticsearch.org
9http://json.org/

10http://d3js.org/

http://www.elasticsearch.org
http://json.org/
http://d3js.org/
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 71

What do they know?What do they know?What do they know?What do they know?What do they know?

StrategiesStrategiesStrategiesStrategiesStrategies

GoalsGoalsGoalsGoalsGoals

What do they value?What do they value?What do they value?What do they value?What do they value?

StylesStylesStylesStylesStyles

ProductivityProductivityProductivityProductivityProductivity

Boundary conditionsBoundary conditionsBoundary conditionsBoundary conditionsBoundary conditions

Personal preferencesPersonal preferencesPersonal preferencesPersonal preferencesPersonal preferences

LimitationsLimitationsLimitationsLimitationsLimitations

Where are they?Where are they?Where are they?Where are they?Where are they?

file:///C:/lmarques/PUC/doutorado/2014.2/tese/pesquisa/estudo lingua...

1 de 1 2015-03-12 16:45

Figure 4.5: Example of dynamic data visualization

results. The scripts were a helpful resource to facilitate the execution of many

cycles of tests and adjustments of data and scripts over the course of this

research phase.

4.4
Considerations about the research

The research approach described in this chapter has a typical qualitative

nature, in which the object of investigation is gradually constructed and

refined. In this process, collected data influences the refinement of methods

used in the research, and inspires new hypothesized meanings to be potentially

extracted from them. In turn, as methods and theoretical tools are refined, they

lead to new insights and perspectives over the collected data. This iterative

nature of the research process serves the acquired knowledge from one iteration

as input to the next one, and previous findings and interpretations end up being

under constant revision.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 72

The qualitative researcher is also part of the process, as an additional

instrument of research. Differently from a quantitative researcher, who applies

well defined and rigorous statistical, mathematical or computational techniques

to analyze data, the qualitative researcher usually refines the object of research

and methods as part of the investigation process. In hindsight, it is clear that

the initial analytical tools and methods in the research presented in this volume

have been adapted under the influence of the knowledge acquired from the

results of data inspection and analysis. Conversely, the refined methods have

provided new perspectives and helped the extraction of new meanings from

empirical data.

The perception of this iterative and incremental nature of the qualitative

research process helps to explain the next chapter’s contents. Section 5.2

describes the epistemic tools for API design and analysis, which have been

formulated over the course of the research, based on the theoretical support of

Semiotic Engineering and the Cognitive Dimensions of Notations. The tools’

initial conception helped to organize the analysis of collected data, but the

process of analysis also influenced the shaping and refinement of these tools.

Therefore, the tools are part of the applied method and, at the same time, a

contribution of the research.

Chapter 5 analyzes the results of the research, encompassing the epi-

stemic tools mentioned above and the qualitative findings from the studies

described in this chapter.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

5
Analysis of Results and Findings

This chapter presents analytical results from the qualitative studies

described in the previous chapter. These results include the components of an

epistemic framework to support API design and analysis from a communication

perspective, and the findings that contribute to a deeper comprehension of

communicability and cognitive aspects that influence API design and use.

Section 5.2 describes the epistemic framework components organized

along three major communicative dimensions: intent, effects and failures. In the

sequence, section 5.3 presents qualitative findings of the studies and discusses

their implications in the context of API design.

Before analyzing the studies’ results, section 5.1 introduces concepts

that contribute to a better comprehension of the discussion promoted in the

remaining sections of this chapter.

5.1
Considerations about the ‘active programmer’ and abductive reasoning

In the 1980’s, Carroll and Rosson introduced a concept named “the

paradox of the active user” (89). They concluded from their studies that

users frequently show conflicting behavior when learning a new technology,

summarized by two paradoxes: motivational and cognitive.

The motivational paradox corresponds to the “production bias” users

show when learning a new technology: they try to be productive in using the

techonology as quickly as possible, and this reduces their motivation to spend

time just learning about it. Therefore, they try to learn the minimum necessary

for them to use the technology, and keep on with this acquired basic knowledge.

The cognitive paradox is associated with the “assimilation bias”, which

states that people apply previous knowledge and experience to interpret new

situations that occur when learning about new technology. In some cases,

this bias may contribute to misleading comparisons between ‘old’ and ‘new’

knowledge, which may hinder users’ learning process.

The main implication of these paradoxes is that, in general, users tend

to learn a new technology by a trial-and-error approach, rather than spending

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 74

time ‘reading the manual’ and taking similar actions with special focus on

learning. Considering that programmers are a special class of users that need

to learn a number of technologies and tools (new APIs included), this general

principle also applies to them.

User behavior as described by Carroll and Rosson can also be viewed in

terms of abductive reasoning, a concept used by Semiotic Engineering (and

Semiotics in general) to model users’ interpretive process when assigning

meaning to signs, as explained in (90). Abductive reasoning, as opposed to

deductive reasoning, consists of the formulation of plausible hypotheses in

users’ process of sense making (91). When positive evidence confirms the

hypothesized rules, the interpretation process may be interrupted. Otherwise,

when there is no confirmation of the initial hypothesis, a new hypothesis may

be raised, and the process continues.

Based on this model, we can think of programmers as ‘active users’ that

continuously formulate hypotheses that conduct their interpretation of signs

when learning a new API, based on their previous experience, knowledge,

biases and cultural influences. After obtaining evidence that confirms their

hypothesis, they stabilize the interpretation of API’s meanings, and keep with

them until counter-evidence arises.

Learning a new API involves using a programming language and the

extensions that the API provides on top of the language. Therefore, users

formulate their hypothetical rules about API’s behavior based on lexical,

syntactical and semantic aspects of the API language. Most of these aspects

are defined by the underlying programming language, which provides common

ground for designer-user communication (as long as user has enough knowledge

about the programming language).

However, an API adds new lexical and semantic elements on top of an

existing language. These elements encode the designer’s intent, which encom-

passes the pragmatic aspects of designer-to-user API metacommunication, as

discussed earlier in this text. For this reason, designers should evaluate their

decisions in terms of leading the users’ abductive reasoning towards the for-

mulation of productive hypotheses, preferably compatible with the aforemen-

tioned pragmatic aspects. To accomplish this goal, designers should make use

of static, dynamic and metalinguistic signs in a coordinated fashion, consider-

ing the structure of API metacommunication space presented in section 5.2.

Figure 5.1 illustrates the elements that contribute to a user’s abductive

reasoning process when learning an API. Users inspect lexical, syntactical and

semantic aspects of programming language and API, formulating hypotheses

that add pragmatic aspects to their meaning construction process. Due to their

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 75

lack of pragmatic component, programming languages depend on natural lan-

guages to complement their expressiveness in order to achieve full metacom-

munication. In the API context, natural language usually appears in the form

of documentation, identifiers and runtime messages.

Language
components

Lexical

Syntactic

Semantic

Pragmatic

user’s knowledge of
programming

language

user’s knowledge of
programming

language and API

user’s interpretation
of API’s meanings

User’s abductive
reasoning

Figure 5.1: User’s interpretation of API language

This communicative view of the active user paradox is not, by itself, a

direct result from this research, since it has been previously described in (90).

However, it is a central concept that permeates the study of APIs as human

communication mediated by software. It contributes to a change of perspective,

in which we may view API design as an attempt to conduct user’s abductive

reasoning to an interpretation that is aligned with the API’s pragmatics. It

is a useful concept that helps us to understand the remaining topics in this

chapter.

5.2
Communicative dimensions and epistemic tools for API design and ana-
lysis

This section introduces the epistemic tools1 for API design and analysis

as part of the research results. As explained in section 4.4, these tools have

been developed to carry out the analysis of empirical data from bug reports,

and subsequently evolved in the process of the dataset analysis itself. Despite

the tools’ sequential presentation in this section, it is important to note that

1As described in 3.1.11, de Souza defines an epistemic tool as “one that is not used to
yield directly the answer to the problem, but to increase the problem-solver’s understanding
of the problem itself and the implications it brings about. (...) epistemic design tools are those
that will not necessarily address the problem solution, but the problem’s space and nature,
and the constraints on candidate solutions for it.” – (22) p. 33

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 76

their final configuration is the result of many iterations of investigation, with

constant feedback from data to analytical tools and vice-versa.

The tools’ presentation follows an organization of the communicative

space around dimensions that were relevant to discuss API design, namely

intent, effects and failures. This organization is inspired by speech act theory

model (80), in which the speaker’s intent (illocutionary act) may result in a

range of effects on the listener (perlocutionary act), as explained in chapter 3.

When a mismatch occurs between the sender’s intent and the actual resulting

effect, the diagnostic of the failures that may have taken place helps us to

develop a better comprehension of the communication breakdowns and their

causes, which are objects of primary interest in this research.

It should also be noted that there has been an effort to create these

tools with special attention to their soundness and completeness. However,

they reflect the subjective (albeit systematic) interpretation of collected data

over a delimited set of empirical evidence. Yet, we believe that they provide

a novel perspective on the research and development of APIs, as illustrated

by the remaining sections in this chapter. The relevance, nature and quality

of new knowledge resulting from the application of these tools will determine

their future improvement and consolidation.

5.2.1
Intent

In general, an API can be viewed as a ‘shortcut’ that allows a programmer

to accomplish a set of goals with less effort and faster. However, the artifact’s

design encodes intentional aspects that may be sometimes incompatible with

programmers’ goals, needs, preferences, and so on. This is a major motivation

to frame the analysis of API design under a communication perspective,

with especial emphasis on a pragmatic view of the subject. The conceptual

distinction between intent and resulting effect allows us to examine this

communication process in greater detail with respect to the factors that

influence its outcomes.

Two conceptual tools compose the intent dimension of the API epistemic

framework: the API metacommunication template and the API metacommu-

nication elements.

API metacommunication template

As discussed in chapter 3, the metacommunication template is a key

concept in Semiotic Engineering theory, and is defined as the following sen-

tences ((22) pp. 96–97):

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 77

Here is my understanding of who you are, what I’ve learned you want or

need to do, in which preferred ways, and why. This is the system that I have

therefore designed for you, and this is the way you can or should use it in order

to fulfill a range of purposes that fall within this vision.

The metacommunication template freely paraphrases the designer’s in-

tent encoded in a software artifact, and serves a twofold purpose. Firstly, it

promotes the designer’s reflection while analyzing the options and trade-offs

that may exist in the design and construction of an interactive system, con-

tributing to the organization of the design space. In addition, it guides the

profiling of an interactive system’s communicability, through the application

of the Semiotic Inspection Method (SIM) (26). In this method, an independ-

ent researcher uses the template as a tool to evaluate inconsistencies and other

communicability issues in the actual (as opposed to the intended) designer’s

discourse.

This research uses the metacommunication template apart from SIM.

The template guided the communicative investigation of API design, and was

instantiated to better suit the study of software interfaces. It also contributes

to increase the designer’s awareness of the aspects that may influence API

design and use.

The template may be divided in parts that map the space of factors

that influence designers’ choices and decisions in the process of constructing a

software artifact. These major components of the template have been initially

defined to guide the analysis of empirical data. Over the course of the research,

the refinement of these categories reflected the insertion of various elements

that have been observed in the analysis of data, or that could be potentially

observed.

The design space paraphrased by the template can be represented by

four main questions, further divided into subcomponents that help the process

of answering these questions and filling out the template.

Template part Components

Who are the users?

What do they know?
Where are they?
In what conditions?
What do they value?

What do they need or want to do?
Goals
Boundary conditions

In which preferred ways?
Strategies
Styles

Why?
Limitations
Personal motivation
Productivity

Table 5.1: Metacommunication template components

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 78

The subcategories of the template’s components provide high-level

guidelines for answering the main questions. They are quite general and can

be applied to the more traditional HCI approach of Semiotic Engineering,

as well as to the investigation of APIs. In this research we instantiated the

main aspects that influence the answer to these questions in the context of

API design. These aspects derived from the analysis and interpretation of em-

pirical data, where instances of communication breakdowns provided insights

to enumerate these aspects. Figure 5.2 shows the further instantiation of the

metacommunication template and its adaptation to the API context.

The following paragraphs describe each template component adapted to

the study of APIs.

What do they know? In general, an API is closely associated with

a specific programming language, except in cases of interfaces that support

multiple languages (e.g. CORBA, Web services). In most situations, where the

API has a specific underlying language, there is usually a typical profile of

the target audience. For instance, the PHP language claims to be “extremely

simple for a newcomer, but offers many advanced features for a professional

programmer”2. From this statement, we can infer that novice programmers

may be part of the language’s typical audience. This aspect should be taken

into account when designing an API for a PHP library, for example. Typical

users’ level of experience in programming, as well as exposition to previous

languages and knowledge of the API’s domain are relevant aspects to be

considered. In PHP, for example, previous knowledge of C or Perl has been a

factor of influence in the design of the language’s features and libraries. The

same applies to Java with respect to previous C++ knowledge. References

to unusual or complex concepts that escape the intended audience profile

and background knowledge should be object of careful thought in the design

process.

It should be noted that the considerations about users’ knowledge spans

beyond the limits of programming concepts and language expertise. APIs

frequently use concepts from ‘ordinary’ domains that most people are familiar

with (at least, in the higher-level sense). For instance, many APIs include

concepts from common domains like date and time, which is, by itself, a

major source of problems related to their use, as will be discussed further in

this chapter. This type of ‘basic’ user knowledge requirements should not be

overlooked, at the risk of possible breakdowns in programmer’s interpretation

of the designer’s message.

Where are they? Programming tools and techniques have a long

2http://php.net/manual/en/intro-whatis.php

http://php.net/manual/en/intro-whatis.php
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 79

What do they know?

Programming expertise

Educational background

Knowledge about other languages and paradigms

Types of API interaction patterns

Knowledge of API domain

Where are they?
Culture

Language

In what conditions?
Professional programmer

End-user programmer

What do they value?

Usability

Consistency

Simplicity

Conventions and standards

Goals Intended use cases for the API

Boundary conditions
Pre-conditions

Constraints

Strategies
Selection and combination of objects, methods,

functions, and other API and language elements to

achieve intended objectives

Styles

Programming conventions and culture

Language-specific conventions and culture

Parameter and return style and semantics

Naming styles

Error notification and handling (exceptions, returns,

logging)

Default behavior

Limitations

Security

Performance

Environment and system requirements

Lack of experience or knowledge

Personal motivation

Naming preferences (lexical/syntactic/semantic)

Programming culture

Educational background

Knowledge from other languages and APIs

Productivity

Error detection, notification and handling

Quick start

Programmer "persona": systematic, opportunistic,

pragmatic

W
h

o
 a

re
 t

h
e

u
se

rs
 ?

W
h

at
 d

o
 t

h
ey

n
ee

d
 o

r
w

an
t

to
 d

o
 ?

In
 w

h
ic

h
 p

re
fe

rr
ed

 w
ay

s
?

W
h

y
?

Figure 5.2: API metacommunication template

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 80

tradition of being developed in English speaking countries, especially in the

United States. As a consequence, the English language is the dominant

language in the software development ‘world’, and the cultural aspects that

surrounds the language frequently show up in the design of software artifacts.

In addition to the inherent difficulties of programming, users which are

not native English speakers face an extra barrier to use languages and APIs

written in English. While the understanding of technical jargon in its more

basic sense is a requirement for all programmers, adoption of more specific

vocabulary or figures of speech in the design of APIs can raise the difficulty

barrier even higher.

Designer’s awareness about this aspect of API construction can avoid

certain situations like the one found in the PHP API: the function that

searches for the occurrence of a substring inside another (strstr) requires

two parameters: haystack and needle. Although familiar to most people, this

metaphorical use of identifiers is probably a poor choice when considering non

English-speaking programmers, as it requires more vocabulary knowledge and

introduces an extra level of signification in the programmer’s semiosis.

Other aspects related to cultural and language differences may arise,

for example, when dealing with accented characters, number separators and

formats, local conventions and so on. Currently, most languages provide a

good support for internationalization features, and many problems that may

have been more frequent in the past tend to be less common. However, this

is still a frequently overlooked aspect of API design, especially in the sense of

not considering the pragmatic consequences of using figurative language with

cultural references.

In what conditions? API users always have higher level goals that

motivate the selection and use of these artifacts. However, the conditions in

which the need for a certain API arises may vary. A possible categorization

of these conditions is related to the type of activity in which the user is

involved. For instance, professional programmers usually have formal education

in computer science concepts. Even if that is not completely true, it is quite

reasonable to assume that they are more familiar with programming concepts

than non-professional programmers. On the other hand, end-user programmers

or ‘occasional’ programmers form a growing community of API users, as the

need of extending or customizing existing systems’ functionalities increases.

Therefore, this is an aspect that designers may consider while encoding their

intent in the software artifact.

Is should be noted that this template component was not frequently

associated with the problems identified in the bug reports analyzed. Due to the

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 81

nature of the collected data in the empirical studies, there was little evidence

of the conditions in which API use occurred. In addition, the languages

involved in the studies (PHP and Java) are commonly used by professional

programmers, which means that the empirical data collected probably contains

more professional programmers than end-user programmers.

What do they value? This is a difficult aspect to generalize in an

anticipated view of the intended audience of an API. It may be influenced by

factors like personality, experience, preferences, and so on. However, designers

can always base their decisions on common sense, or refer to the programming

language community’s culture to find a reasonable trade-off among the factors

that influence this decision. For instance, consistency and simplicity are

generally quality attributes that are valued by users. When complex domains

are involved, simplicity can be a difficult goal to achieve, and can be a

secondary objective when compared to completeness. Also, proper compliance

to well-known standards and conventions can also influence users’s acceptance

and understanding of the design decisions behind an API.

The categorization of ‘programmer personas’ (92) can help the definition

of a prototypical user profile, which may contribute to more informed decisions

about the trade-offs to be made in the design, or even to the design of different

‘facets’ of the same API, each one intended to a variety of programmer persona.

Goals. This is one of the most relevant components in the design space

of API metacommunication. Programmers commonly use APIs as a step to

solve larger problems, and these are the goals that drive their motivation to

learn and call an API’s services. Among the possible outcomes when using an

API, the most favorable one happens when programmers are able to effectively

use it and achieve their objectives. Another possibility is when the software

artifact does not fit the user’s intended purposes, which can result in the search

for an alternative. A third outcome occurs when programmers face a number of

difficulties in attempting to understand and use an API, possibly ‘stumbling’

on it until giving up. This is probably the worst case, and as such should be

prevented from happening. Therefore, designers may think of API design in

terms of goals to be achieved, considering the envisioned scenarios in which

it is intended to be useful to a large audience. Also, these scenarios should

be explicitly communicated to users, so that they can easily identify the main

purposes that the API is intended to serve, and even decide if the API is

appropriate to the tasks to be accomplished.

Understanding and identifying common user goals that motivate the need

for an API can be an important step to achieve a more successful design, as

it may provide adequate support to a wider range of scenarios. However, more

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 82

than enabling common strategies in the use of an API, designers should clearly

introduce these strategies to users, and put them in the context of larger goals.

Boundary conditions. This template component is related to users’

needs to achieve their goals, capturing the possible aspects that may constrain,

limit or prevent users from successfully accomplishing their tasks. For instance,

these include corner cases and exceptional conditions of API operations and

pre-conditions that are common sources of surprise and unexpected outcomes

that may prevent effective use.

This item is closely related to the previous one, as the identification of

boundary conditions considers the possible barriers in the path of achieving

users’ goals. Also, not explicitly stating these boundary conditions may lead

to the formulation of wrong hypotheses in user’s minds about API’s behavior,

which is a common source of trouble.

Strategies. As already mentioned, programmers refer to APIs as a

shortcut to achieve a higher goal in the context of a software project, be it

a small application or a complex system. In both cases, programmers develop

strategies to use API’s services and combine them with other pieces of code,

which usually include other API calls.

The development of programming strategies involves selecting APIs, their

operations and features, as well as language constructs, to combine them in

ways that provide the intended solution. Designers may provide scenarios to

promote common strategies, making their vision about intended use cases

explicit, and creating ‘patterns’ of use that make it easier for programmers

to use the API effectively.

Styles. Programming languages with a large community of users com-

monly develop its own ‘programming culture’, in which some practices are

usually seen as recommended patterns or styles. Common styling aspects in-

volve identifier naming and semantics, error notification mechanisms, patterns

or sequences of calls, and so on. Designers should take these preferences into

account to support commonly adopted styles in the programming cultural en-

vironment in which the API will be introduced. Familiar styles may be easily

recognized by users, contributing to reduce their cognitive load and conduct

their sense making process to an interpretation which is compatible with the

design intent.

Limitations. A programmer’s goals, preferences and styles may be jus-

tified by constraints and restrictions that limit her choices, or impose require-

ments that must be met by the software artifact. For instance, programmers

may choose to use an API in a non-standard way for security or performance

reasons. System or environment restrictions may also limit the use of certain

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 83

API features. Also, programmers’ lack of experience or knowledge can influ-

ence the way they use an API’s features. For example, a novice programmer

may choose to use only a subset of an API’s operations that provides an easier

interface, exposing only the most simple operations.

Personal motivation. Users’ motivation to adopt certain strategies and

styles can also be justified by personal preferences, guided by their previous

knowledge, cultural aspects, educational background, and so on. Individual

preferences may be difficult to support, as they may vary indefinitely among

users. However, in some cases, certain patterns may arise from a community

of users, which can also influence newcomers in their learning process. The

observation of these patterns can serve as an indication of a possibly ‘popular’

preference, as people usually learn by examples, and tend to adopt styles and

solutions they are familiar with.

For instance, many APIs that support regular expressions adopt Perl’s

syntax in their implementation, as it is probably the most popular syntax

for this type of pattern specification. In this case, there is an easy choice for

designing APIs that make use of regular expression syntax. However, in other

domains the decision may not be so obvious, which requires some reflection

and research to make an informed decision about trade-offs that may influence

an API’s popularity.

Differently from the HCI context, in which studies about users’ profile

and motivations are extensively carried out, in the API design domain this type

of study is not common, and frequently not feasible. Therefore, API designers

may ‘anticipate’ users’ motivations based on thoughtful reasoning guided by

the template’s components, rather than just guessing.

Productivity. Aspects concerning programming productivity can be a

source of motivation to justify user’s choices and requirements. For instance,

there is evidence from the empirical data analyzed showing that many users

prefer to be notified in case of error conditions or inconsistencies that may lead

to unexpected API behaviors. This can be considered a productivity matter,

as programmers would like to be informed of any potential problems that

may occur later in the software development cycle. A choice of a lenient API

behavior can be harmful to productivity, as it may ‘hide’ unexpected conditions

that can cause further side effects. This subject will be further discussed in

section 5.3. Another productivity aspect to be considered by API designers

includes common scenarios that enable a ‘quick start’ for most use cases. This

can help users in their attempt to make effective use of basic API features.

Programmer’s personas can also be a factor of influence on this topic, since

“opportunistic programmers” (92) show a clear preference for quick and simple

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 84

solutions to solve their problem, even if they don’t fully understand it at first.

Metacommunication elements

The API metacommunication template organizes the space of the de-

signer’s reflection about the artifact that is to be constructed: the audience

profile, the problems it is supposed to help solving, the strategies it supports,

and so on. An API, in its role as the designer’s deputy at interaction time,

should effectively communicate its underlying design vision. In order to ac-

complish this objective, designers can use a set of elements that support this

communication process. Among these elements, we have programming lan-

guage features that allow API specification and implementation, and natural

language descriptions (documentation). This subsection provides an overall

description of elements that enable API metacommunication, organized by di-

mensions of human communication which they are mainly related to. These

dimensions are expression, content and intent.

Expression refers to the code forms from signification systems used

in communication to achieve its goals, i.e. sender’s intent. From a linguistic

perspective, it is usually associated with the lexical and syntactic aspects of

language. Considering communication through software artifacts, designers’

expression corresponds to the use of formal language’s vocabulary and syntax.

Written documentation is also a form of expression in API metacommunic-

ation, which extends the formal language with richer vocabulary and syntax

from natural language, with less rigor. It provides more expressiveness for de-

signers to convey their message to users, which is in line with our ‘holistic’

perspective of API metacommunication explained in 3.1.11. In the classific-

ation of API metacommunication elements, we take expression to mean the

representational rules specified by the underlying programming language, i.e.

the set of all rules that affect syntactical and lexical choices available to pro-

grammers.

Content refers to the actual meaning carried by the sender’s expression.

In general, it corresponds to a language’s semantic aspects. In natural language

communication, different forms of expression may convey the same content,

which is not usual in the case of formal languages. In the context of API

metacommunication elements, content defines the operational meaning of all

valid representations (i.e. expression).

Intent deals with sender’s goals in communication, and is usually

associated with pragmatic aspects of language. Semiotic Engineering handles

intent by means of speech act theory, which distinguishes sender’s objectives

(illocutionary act) from the actual effect on receiver (perlocutionary act).

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 85

Classification Element Instances

identifiers

domain terminology

namespaces

inheritance

composition

patterns and formats

regular expressions

natural language' parameters

conventions

standards

areas of knowledge

identity and comparison

value and reference

design patters

interaction with language features

parameters' semantics

parameters' type, expected size, length

and range of values

return types and semantics

side effects

error and exception conditions

default behavior

lenient behavior

boundary conditions

common goals

common strategies

patterns of use

limitations

concurrency

configuration

environment

security

post-conditions

CONTENT (Semantics)

operational meaning of all valid

representations

context

envisioned scenariosINTENT (Pragmatics)

purpose, assumptions, ability, modes,

means, styles & space-time

circumstances for 'constructing'

instantiated operative expressions

programming aspects

pre-conditions

naming

structure

auxiliary notation

EXPRESSION (Lexicon & Syntax)

(set of all) representational rules

domain concepts

Figure 5.3: API metacommunication elements

Effective communication occurs when perlocution matches sender’s illocution.

With respect to API design, intent elements convey the pragmatic aspects

of API use: purpose, assumptions, ability, modes, means, styles & space-time

circumstances for ‘constructing’ instantiated operative expressions.

Figure 5.3 illustrates the classification of API metacommunication ele-

ments and provides some instances for each type. These elements can be com-

bined to handle API metacommunication, working as ‘building blocks’ that

help the encoding of the template parts in a software artifact.

A brief description of these elements follows.

– naming: choice of the various names that compose an API, like para-

meters, functions, classes, and so on, using vocabulary that includes pro-

gramming and domain concepts;

– structure: language features that allow structural organization of an API,

like name spaces, inheritance and composition.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 86

– auxiliary notation: secondary representation systems that extend the

primary language, like patterns for regular expressions and date parsing

or formatting. There are also APIs that use a ‘natural language’ style to

specify certain operations like, for instance, relative periods of time.

– domain concepts: APIs usually solve problems of various domains, so

there is a need to make clear which concepts from the related domain(s)

are used, and in which ways.

– programming aspects: some concepts from programming languages are

critically important for proper language use, and yet, they are still source

of misunderstandings from programmers, also affecting the use of APIs.

For instance, issues concerning object identity and comparison, values vs.

references, patterns of use and mutability are some examples of elements

that may affect the effectiveness of API design communication.

– pre-conditions: conditions that should be met by users before calling an

API operation, like parameter types and accepted range of values, and

the meaning of these values. These are user ‘obligations’ in the semantic

contract of an API.

– post-conditions: specify API commitments in the semantic contract, i.e.

results obtained by users after calling API operations (user ‘rights’).

These results usually depend on the evaluation of pre-conditions, as

violating them usually result in errors. Designers specify post-conditions

to communicate clearly what should be expected in normal operating

conditions, and what should happen in case of error. Furthermore, default

and lenient behavior are relevant aspects of this metacommunication

element that are frequently omitted, frequently appearing as cause of

trouble.

– envisioned scenarios: every API is designed to support a set of use scen-

arios, which may be explicitly defined or not. These scenarios present

which goals an API is supposed to achieve, and what strategies can sup-

port these goals. This is a metacommunication element of primary relev-

ance, as it provides the pragmatic conditions under which the software

artifact is intended to offer its services effectively. Thoughtful scenarios

may help programmers identify and understand an API’s common situ-

ated uses, providing appropriate patterns that can be adapted to achieve

a range of purposes. Scenarios can also be a useful tool to illustrate API’s

limitations and corner cases.

– context: API operations may have different meanings and behaviors when

operating under specific contexts. For instance, concurrent operations

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 87

can cause non-deterministic API behavior. Also, configuration, environ-

ment and security issues may also affect API operations. These are im-

portant aspects to be communicated to API users which usually cannot

be fully expressed at the semantic level of programming languages.

By analyzing the description of each element classification shown in figure

5.3, we can see that the definition of the intent dimension is more complex

when compared to the definitions of the expression and content dimensions.

This may be explained by the fact that, at the pragmatic level, designers have

the chance to communicate patterns, conditions and contextual information

that language’s semantic aspects usually cannot express in isolation. This

perspective shows us that, from a communication standpoint, much is left

behind if we only specify the lexical, syntactical and semantic aspects of APIs.

The findings from the qualitative analysis of empirical data also supports this

conclusion, as discussed further in this chapter.

Quality attributes for elements. Metacommunication elements

provide an organized view of the resources available to compose the designer’s

message to users. In addition to identifying what makes these elements of dis-

course, we should also think in terms of their quality attributes to characterize

their communicability. Concepts that apply to communication in general can

also be used to qualify these elements, like consistency, redundancy, ambiguity

and completeness. Depending on the context, these attributes may indicate

either positive or negative characteristics of an element. For instance, redund-

ancy is frequently used in communication to highlight certain aspects of a

message which may affect positively its effectiveness, whereas in formal lan-

guages it is usually considered bad practice.

The cooperative principle, defined by Grice’s four maxims (see chapter

3), provides theoretical guidance to the formulation of these attributes. The

following list presents the proposed attributes and their description, as well as

their relation to the maxims, when applicable.

– completeness: corresponds to the maxim of quantity, which states that

“participants in a conversation should make their contribution as inform-

ative as necessary; not more not less” (22).

– conciseness: it is the dual of the previous attribute, and refers to the “not

more than necessary” part of the maxim of quantity.

– ambiguity: derives from the maxim of manner, and affects negatively the

quality of communication.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 88

– correctness: the maxim of quality states that participants in a conversa-

tion should not “tell a lie”. In the context of API design, this maps to

including incorrect information in metacommunication elements.

– relevance: the maxim of relation recommends that participants observe

the relevance of their communication, and it also applies to the context

of API metacommunication.

– consistency: similar intent and content elements should be expressed us-

ing similar code forms. This can be used as a communication strategy

to help reduce cognitive impact on users, as described in the cognitive

dimensions framework by a dimension named the same way. This dimen-

sion is further discussed in section 5.2.2.

– grounding: the maxim of quality also states that participants should

observe their knowledge and doubts in conversation. This maps to the

need to make sure that participants in communication share a common

ground, like domain-specific of language knowledge. Elements used to

construct the designer’s message should compensate for possibly inad-

equate grounding, guided by the metacommunication template compon-

ents.

– visibility: interacting with APIs relies on textual languages, both formal

and natural. This means that the structural organization of communic-

ation may contribute to (or not) the availability of relevant information.

For example, API documentation should emphasize the most relevant

information for its appropriate use. This may involve text formatting

strategies, as well as lexical, syntactic and semantic choices to achieve

better visibility for critical information.

– use of metaphors: choosing appropriate identifiers in API design is critical

for signifying its intended use. However, the trade-off between express-

iveness and conciseness sometimes make it a difficult decision. Metaphors

are a powerful resource to extend the potential meanings extracted from

a piece of communication, relying on its pragmatic aspects. Therefore,

good metaphors can contribute to better understanding of API’s fea-

tures. On the other hand, bad choices may hinder user’s interpretation

of its meanings.

– use of metonymies: similarly to metaphors, metonymies are frequently

explored in the construction of software artifacts, extending the express-

iveness of language by exploring associations between things or concepts

(containment, contiguity, product/process, and so on). Just like meta-

phors, using metonymies can contribute (or not) to improve communic-

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 89

ability, depending on factors that influence its interpretation like culture,

contextual information or programming experience.

– redundancy: redundant messages provide special emphasis on communic-

ation aspects that deserve special attention, especially between different

contexts of use. When it comes to API documentation, for example, in-

serting critical information in different but strategic places may prevent

users from bypassing critical details. In the context of formal represent-

ation of APIs, however, redundant use of language elements may affect

negatively its interpretation.

In spite of being orthogonal to metacommunication elements, not all

quality attributes may be adequate to characterize some of these elements. For

instance, consistency is probably closer to the characterization of expression

elements than content or intent elements. Other attributes like completeness,

correctness and relevance can properly qualify any element. In the case of meta-

phors and metonymies, one can think in terms of proper (or improper) use of

metaphors and metonymies, which apply mostly to expression elements (nam-

ing). The discussion of findings in section 5.3 illustrates some examples of how

these attributes may be used to describe the quality of metacommunication

elements.

5.2.2
Effects

The second dimension in the proposed communicative perspective of API

design accounts for possible effects of API metacommunication on users. As

previously mentioned, this classification is based on the distinction between

the illocutionary act (intent) and the perlocutionary act (effect), proposed

by speech act theory. This subsection introduces a classification of metacom-

munication effects on users in the context of API use. It also discusses the

application of the cognitive dimensions of notations framework to characterize

the communication effects in terms of cognitive impact on API users.

Metacommunication effects

The effects of API metacommunication on users encompasses the differ-

ent ways in which users may perceive and understand the software artifact’s

available features and operations. We refer to the generally available features

and operations of APIs as affordances, a term borrowed from Psychology (93)

and introduced in HCI by Norman (94) to describe the possible actions that

users may perceive when interacting with an artifact. This term is commonly

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 90

used to distinguish between real and perceived affordances, making clear the

separation between available actions and their actual interpretation by users.

In order to systematically analyze metacommunication effects, we provide

a taxonomy for these effects that considers users’ perception and understanding

of API affordances and their meaning, as well as their actual existence. Figure

5.4 illustrates the proposed classification of metacommunication effects.

Effect of

metacommunication

user accepts API affordance successful

user rejects API affordance declined

API affordance is different from

user's expectations
unexpected

because the API operation is not

compatible with user's semantic

and/or conceptual model

misunderstood

because user made wrong

assumptions about context of use

(e.g. default behavior is different

from user's expectations)

misused

missed

expected

User perceives API

affordance

User does not perceive

API affordance

user fully

comprehends API

affordance

user does not fully

comprehend API

affordance

User's perception and comprehension of API affordance

API provides affordance

API does not provide affordance

Figure 5.4: API metacommunication effects

The first level classifies the effect with respect to users’ perception of

an affordance. When trying to use an API, programmers look for features

that help them achieve a certain goal. Depending on metacommunication

effectiveness, users may face different levels of difficulty to realize that API’s

features correspond (or not) to what they are looking for.

Once identifying the existing affordance, a user tries to understand the

details of its operation and use it. Depending on his interpretation of API’s

features, different outcomes may occur. If the user understands and accepts the

design of the API affordance, the effect of metacommunication is successful.

Alternatively, if user fully understands but rejects the chosen design, the effect

can be classified as declined. Lastly, if a user understands an affordance, but

finds out that it works differently from his initial assumptions, this type of

effect can be classified as unexpected.

Still in the context where a user identifies the existence of an affordance,

it may be the case that she does not fully grasp its goals or details of operation.

This may happen when user’s conceptual or semantic model of the API’s

operation does not correspond to its actual implementation. It means that

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 91

the feature’s overall goal was understood, but not all of its details. In this

case, we refer to this type of metacommunication effect as misunderstood.

Additionally, there is a subtle variation of the misunderstood effect, when

user actually comprehends the concepts and semantics of API operations, but

makes wrong assumptions about implicit aspects of its behavior in specific

contexts. For instance, user expects a default behavior from the API that

does not correspond to the actual implementation. This type of effect can

be regarded as a ‘partial’ misunderstanding of an API affordance, and we

refer to it as misused. When compared to the effects that characterize API

misunderstanding (misunderstood and misused), the unexpected effect can be

characterized as a temporary breakdown in user’s comprehension, which means

that a user expects an affordance to work in ways that she quickly discovers

that are different from the actual behavior.

When users do not perceive an affordance as available, we divide the

effect taxonomy between missed and expected. The ‘missed’ effect describes

the scenario where the affordance is actually available, but the user does not

realize its existence. Its counterpart is the ‘expected’ effect, which occurs when

the user looks for features that the API does not provide.

In the proposed classification, the effect named ‘successful’ refers to the

absence of problems in metacommunication, which is the main objective of API

design. Therefore, the remaining effects are of prime interest in the context of

this research, as they indicate potential communicability issues.

It should be noted that, in spite of being a possible effect according to the

criteria used in the proposed taxonomy, ‘unexpected’ was not observed in the

analysis of empirical data. The nature of the collected empirical data explains

the absence of this effect in its analysis and classification. The ‘unexpected’

effect characterizes a situation where a user perceives an API affordance but

temporarily interprets it in a different way. However, in this case the user

rapidly restores his interpretation of the affordance, and understands that it is

different from her expectations. In the classification of communication failures,

this is close to the ‘oops’ tag, where user immediately realizes and recovers from

an error situation, as discussed in subsection 5.2.3.

In addition to the characterization of users’ perception and understanding

of API affordances, we may also describe the effect dimension in terms of the

cognitive aspects that possibly affect users in the process of receiving and

unfolding the designer’s message encoded in API’s artifacts.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 92

Cognitive characterization of effects

As previously mentioned in chapter 3, the Cognitive Dimensions of

Notations framework has been used as part of the methodological tools to

analyze the empirical data collected from bug reports. Over the course of the

research, the CDs have been used as a vocabulary to describe the cognitive

aspects explicitly or potentially associated with the communicability issues

identified in the bug reports. Also, the CDs promote an organization of the

cognitive space to be analyzed when dealing with notations like programming

languages and APIs, much like this research intends to contribute to the

organization of API design space from a communication perspective.

Despite the adoption of a designer-programmer metacommunication

perspective, this research work uses the CDs to characterize the cognitive

impact on programmers only. This is an important distinction to make from

the alternative use of CD’s, which would describe designers’ own cognitive

issues when dealing with a programming language to construct APIs. During

the research iterations, the role of the CDs converged to the description of

how API metacommunication issues may affect programmers cognitively, in

association with the possible communicative effects. The analysis of cognitive

aspects from the perspective of API designers should probably offer novel and

interesting insights, but is beyond the scope of the current work.

Traditionally, CDs have been used to evaluate the usability of notations

in scenarios that define a certain task to be accomplished. However, these eval-

uations usually take notations in isolation. One of the envisioned advantages

of using the CDs inside a communicability perspective is that, together, they

allow us to analyze a notation in a more completely specified context of use

(because it includes explicit intentionality and communication aspects). The

metacommunication analysis frames the API notation to which we apply the

CDs. This provides a richer situated view of the cognitive aspects involved, as

opposed to a generic unsituated analysis of the notation by itself.

In the process of refining the use of CDs to describe cognitive effects

of metacommunication, the initial set of dimensions was reduced and reinter-

preted to a more specific instantiation of some dimensions. Differently from

the adaptation of the dimensions proposed in API usability studies carried out

at Microsoft (14), the original names of the dimensions have been kept.

Some of the dimensions were not selected from the original set, not

because they don’t apply to the evaluation of APIs, but for being closer to the

characterization of how users interact with an API to accomplish a series of

goals (user-system communication). As we are dealing mostly with the effects

of designer-user metacommunication, the selected set of dimensions are better

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 93

suited to describe the interpretation of API’s affordances. For this reason,

dimensions like ‘viscosity’ or ‘premature commitment’, for example, do not

show up in the final list of dimensions, as they are not suited to describe the

cognitive impact of metacommunication effects on users. Figure 5.5 illustrates

the selected set of dimensions to characterize cognitive aspects associated with

API metacommunication effects.

Cognitive dimension Metacommunication effect interpretation

Abstraction Level API abstractions don't match user's expectations or interpretation

Hidden dependencies Important links between entities are not visible or not obvious

Visibility Ability to view entities easily

Closeness of mapping
Closeness of representation to the domain, considering user's knowledge,

goals, preferences and needs

Consistency Similar semantics are expressed in similar syntactic forms

Diffuseness
User has to write more code that needed or wanted to circumvent API

limitations

Error-proneness
The API invites mistakes and gives little protection in the context of the

user's wrong strategies

Hard mental operations High demand on cognitive resources

Role-expressiveness

The purpose of an API element is readily inferred by the user, considering

her profile and background, so that the she doesn't need to look for

further clarification and/or disambiguation

Figure 5.5: Cognitive dimensions to characterize API metacommunication
effects

The application of the CDs to enrich the description of metacommunic-

ation effects with cognitive aspects will be further illustrated in section 5.3.

The characterization of API metacommunication effects in terms of users’

perception, understanding and cognitive impact enables designers’ awareness

about the outcomes that may result from the inherent trade-offs of design

activities. Next subsection introduces the classification of failures that help in

the diagnostic of communicative issues that lead to these effects.

5.2.3
Failures

The third dimension used to structure the communicative space of API

design provides a diagnostic of the mismatches between designer’s intent (il-

locutionary act) and its effect on users (perlocutionary act). These mismatches

can be characterized in terms of the classification of communicative failures

proposed by Semiotic Engineering, presented in chapter 3. In this chapter, we

introduce an adapted classification of failures, with minor changes and reinter-

pretations of their original meaning in order to better suit the context of API

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 94

metacommunication. There are three main classes of failures as listed below,

extracted from (22):

– Complete failures: occur when global illocution is not consistent with

global perlocution (strategic failure).

– Temporary failures: occur when global illocution is consistent with global

perlocution, but local illocution is not consistent with local perlocution

(operational failure).

– Partial failures: if local illocution is consistent with local perlocution, the

failure is categorized as partial with:

– potential residual problems for the user because she does not

understand the designer’s deputy’s illocution, and this somehow

fails to do exactly what is expected.

– no residual problems for the user because she fully understands the

designer’s deputy illocution, but somehow fails to do exactly what

is expected.

The top level classification of failures can be further analyzed at a finer

granularity level by using a set of tags that characterize communicative break-

downs from the perspective of the receiver. These tags are part of the Commu-

nicability Evaluation Method (CEM) (26), and their main goal is to ‘put words

into user’s mouth’ when applied to HCI studies involving participants. In the

context of this research, these tags describe the breakdowns that programmers

may experience as receivers of API designer’s metacommunication. Figure 5.6

corresponds to an adaptation of a table found in page 43 from (26), and shows

minor changes in the ‘illustrative symptoms’ to provide examples of possible

tag application in the context of API communicability evaluation.

Almost all tags represent utterances that users may explicitly or impli-

citly emit while experiencing failures in the interaction with a system during

an evaluation session. The only exception is the ‘looks fine to me’ tag, since

only the evaluator is in the epistemic position to identify a situation where the

user has not accomplished her goal, despite the fact that she believes to have

suceeded.

The reinterpretation of some tags in the context of the analysis of bug

reports can be summarized as follows:

– ‘I give up’: this tag applies to the reports where user is conscious of failure

in achieving her goal with the API. However, the fact that the user filed

a bug report means that she thinks that the API should provide some

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 95

Categorization Distinctive feature Tag Possible illustrative symptoms

User is conscious of failure. I give up.
The user believes that she cannot achieve her goal and

interrupts interaction.

User is unconscious of

failure.
Looks fine to me.

The user believes he has achieved her goal, although

she has not.

User understands the design

solution.

Thanks, but no,

thanks.

User understands the design solution, but prefers to

use the API in unexpected ways, or rejects the design

solution proposed.

User does not understand

the design solution.
I can do otherwise.

The user communicates her intent with unexpected

signs because she cannot see or understand what the

system is telling her about better solutions to achieve

her goal.

Because she cannot find the

appropriate expression for

her intended action.

Where is it ?
The user knows what she is trying to do but cannot

express then intended goal in terms of API elements.

Because she does not see or

understand the designer's

deputy's communication.

What happened ?
The user does not understand the API response to what

she told it to do. Often, she repeats the operation

whose effect is absent or not perceived.

Because she cannot find an

appropriate strategy for

interaction.

What now ?

The user does not know what to do next. User browses

API elements without knowing exactly what she wants

to find or do; The evaluator should confirm if the user

knew what she was searching ("Where is it ?") or not

("What now?").

Because it is uttered in the

wrong context.
Where am I?

The user is trying to use API features that would be

appropriate in another context of communication. She

may try to use operations in the wrong order, for

example.

Because her expression is

wrong.
Oops!

The user makes an instant mistake but immediately

corrects it.

Because a many-step

conversation has not caused

the desired effects.

I can't do it this way.

The user is involved in a long sequence of operations,

but suddenly realizes that this is not the right one. Thus,

she abandons that sequence and tries another one. This

tag involves a long sequence of actions while "Oops!"

characterizes a single action.

Through implicit

metacommunication.
What's this?

The user does not understand an API sign and looks for

clarification by examining the behavior of an API

element.

Through explicit

metacommunication.
Help!

The user explicitly asks for help by accessing "online

help", searching system documentation, or even by

calling the evaluator as a "personal helper".

Through autonomous sense

making.
Why doesn't it ?

The user insists on repeating an operation that does not

produce the expected effects. She perceives that the

effects are not produced, but she strongly believes that

what she is doing should be the right thing to do. In

fact, she does not understand why the interaction is not

right.

Complete failures

Partial Failures

Temporary failures:

1. User's sense making is

temporarily halted.

Temporary failures:

2. User realizes her

intended interaction is

wrong.

Temporary failures:

3. User seeks to clarify

the designer's deputy's

intended signification.

Figure 5.6: API metacommunication failures

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 96

affordance that is absent or works differently from expected. Therefore,

this tag applies more frequently to situations where the effect on users

are classified as ‘missed’ or ‘misunderstood’.

– ‘Looks fine to me’: when user adds examples to the bug report, it

usually represents a piece of source code that illustrates the actual user

intepretation of API’s affordances. Frequently, this code means that the

user believes she is doing the right thing, which is not true in many cases.

This tag is of great relevance, since it represents a global failure (user

could not achieve goal), although she thinks that the code should have

accomplished the intended goal. Therefore, there is a subtle distinction in

the reinterpretation of this tag when compared to its original sense, since

the user knows that there is actually a problem in the interaction with

the API (otherwise, there would be no reason to file a report in the first

place). The main difference rests in user’s partial awareness of failure: in

the bug report context, user thinks the goal was not achieved because

there is a problem in the API, since in user’s view the code sample ‘looks

fine to me’.

– ‘Thanks, but no, thanks’: user explicitly rejects some characteristic of

the artifact’s design. Mostly, this tag is associated with the ‘declined’

effect, but sometimes users reject the design without perceiving the API’s

affordance or comprehending its details. In this case, it may correspond

to effects ‘missed’ or ‘misunderstood’, respectively.

– ‘I can do otherwise’: bug report systems usually request from users that

they inform possible ‘workarounds’ to the identified bug. This, from a

communicative failure perspective, can be interpreted as a programmer

using alternative or unexpected ways of achieving a certain goal. Usually,

this way of doing things is wrong or suboptimal.

– ‘What happened’: when programmers write and execute code that uses

some API feature, this tag describes the breakdown that may occur when

users face difficulties to interpret its results. It should be noted that the

absence of signs is, by itself, a ‘sign’ that can also be associated with this

tag.

– ‘Why doesn’t it?’: this tag characterizes a temporary failure that occurs

during user’s attempt to test the API feature in discussion by writing

sample code. As the code does not work as expected, the user tries to

execute it a number of times, possibly with minor changes, in order to

understand why it does show the expected behavior. This temporary

failure may precede a complete or partial failure, as it represents user’s

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 97

attempt to interpret the artifact’s behavior and restore productive com-

munication (which sometimes fail to occur).

Due to the nature of empirical data analyzed, some of the communicab-

ility tags described in 5.6 could not be observed. Namely, tags ‘what now?’,

‘where am I?’, ‘oops!’, ‘I can’t do it this way’ and ‘what’s this’. This can be

explained by the fact that these tags depend on live observation of user’s in-

teraction with the system, since they have a dynamic nature that cannot be

inferred from the analysis of bug reports. However, it does not mean that they

don’t apply to the context of API evaluation, and for this reason they have

been kept in the list of tags presented here. Some of these tags also had their

meaning reinterpreted to adapt to the API context.

The analysis of failures by tagging user communicative breakdowns was

one of the first steps of the method used in the research. The objective was to

characterize these failures and try to identify aspects of designer’s metacommu-

nication that might have influenced user’s perception and interpretation of API

affordances. The nature of collected data (bug reports) allowed the analysis

of users’ discourse which, in many cases, offered clear evidence of the failures

involved. Gradually, the analysis of data conducted to the reinterpretation of

communicability tags as described above.

It should be noted that most bug reports in the selected dataset can

be associated with two kinds of situations. The first occurs when a user fails

to accomplish an intended goal with the API, but thinks that her code is

right and the problem is on the API’s side (user does not fully understand the

nature of the problem). The second situation happens when a user understands

what is happening during interaction with API, but thinks that its behavior

is wrong or inadequate (user rejects the design). In the first case, users are not

conscious that they are not using the API correctly, which can be described

by the tag ‘looks fine to me’ (a complete failure). In the second situation,

user consciously rejects the API feature’s design, which is a mismatch between

designer’s intent and user’s expectations or needs. This is the case for tag

‘thanks, but no, thanks’.

Despite the finer granularity of the low-level tags, they are mainly

oriented to the diagnostic of failures users experience as receivers of the

metacommunication message. However, the top level classification of failures

is also of great interest, as it represents the more abstract nature of the

breakdown (complete, temporary or partial). Complete failures are the most

severe because they mean that users could not achieve their goal. Partial

failures, although undesirable, imply that users are not satisfied with API’s

affordances, or use them in unexpected ways. Temporary failures, as they name

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 98

suggest, are only temporary, sometimes with minor consequences. However,

they are frequently the ‘path’ to a major failure, either complete or partial.

The remaining of this chapter discusses qualitative findings, and the

concepts introduced in this section will be applied in the analysis of these

findings.

5.3
Qualitative findings

This section presents qualitative findings derived from research work

described in chapter 4. These findings are the result of observations made in the

analysis of empirical data, based on the communicative approach summarized

in section 5.2.

The following subsections describe these findings, organized in major

categories of topics which resulted from the qualitative analysis of data carried

out in the research studies. This does not mean that these findings should be

taken in isolation, since they are frequently interrelated. Whenever possible,

intersections are mentioned in the text to make them more explicit. In addition,

the implications of these findings are discussed with respect to the research

goals.

5.3.1
Narrow protocol and default behavior

Frequently, we find APIs that implement an extensive set of features,

which map to a wide variety of possible behaviors. These differences in behavior

are usually controlled by methods or functions that work as ‘configuration

switches’, setting an entity’s internal state that determines its functionalities.

However, there are cases in which the interface that allows users to specify

API behavior is ‘narrow’ when compared to the extensive set of different

configurations it maps to. In these cases, a common strategy is to provide a

number of default settings in the API to allow its use without having to specify

all the parameters that rule its behavior. This is equivalent to having a default

value for each parameter or switch that was not specified by programmers.

This approach is an attempt to avoid affecting API usability by forcing a user

to specify a large number of options or settings every time she calls an API

operation.

When designers resort to implementing many default aspects in API be-

havior, there are pragmatic consequences to API metacommunication that may

affect users’ interpretation of its meanings. Sometimes, it is the ‘unspoken’ or

less visible aspects of its behavior that mislead users to interpret API meta-

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 99

communication in ways other than intended ones. Users engage in abductive

reasoning to formulate plausible hypothesized rules, according to their previous

experience, knowledge and cultural influences.

Default behavior may be specified in terms of semantic elements of API

metacommunication, mostly related to operations’ post-conditions. Depending

on the decisions concerning default values, they may affect the pragmatic

aspects of API use, since there can be consequences to the envisioned scenarios

of use. The metacommunication template can guide designers in the evaluation

of users’ knowledge, preferences and needs, so that the choices of default values

may contribute to the proper formulation of users’ hypotheses about API

behavior.

Ambiguous or less visible API default behavior may result in users

misunderstanding it, or even declining to its design approach. Users may also

be surprised by unexpected API behavior, and accept the proposed design

instead of declining it.

From a cognitive view, designers usually take the ‘closeness of mapping’

dimension into consideration when choosing default values, even not being

really aware of it. What is to be noted is that communication processes involves

at least two human minds, and what is close to designer’s view of the domain

may not be the same as the user’s. Therefore, as discussed earlier, we take the

user’s view of the closeness of mapping dimension to characterize the cognitive

effects of API metacommunication.

The definition of default values may follow a variety of criteria, and this

discussion is based on their usability: sparing users from defining a number

of parameters facilitates their work. By making an analogy with Grice’s

Cooperative Principle (see 3.1.5), a default value can be defined by following

the maxims of quality (it is usually true for the user) and quantity (it can be

omitted, since mentioning it would be unnecessarily redundant). This criterion

is based on the pragmatic dimension of language, as it takes into account the

context of use and sign production in the metacommunication process involving

API designer and user.

In addition to usability, default values may also be defined with respect to

‘algorithmic efficiency’ criteria. In contrast, this type of criterion is completely

dissociated from communicative or cognitive aspects, since it focuses on

computational performance. Every variable should be initialized with a value,

thus it may be interesting, from a performance standpoint, to use a specific

default value that does not necessarily match usability criteria. This potential

conflict may lead to decisions based on a trade-off that occurs when designers

have to choose which ‘interlocutor’ to serve with priority: the user or the

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 100

computer. This topic is further discussed in chapter 6.

Another observed consequence of having a narrow protocol to inform

complex API behavior is the adoption of a lenient approach, in which the API

tolerates some inconsistent or erroneous condition by automatically ‘correcting’

the artifact’s state. This subject is further discussed in the next subsection.

The Java bug report 80171333 presents a curious example of the current

topic. The Java SimpleDateFormat class enables parsing date and time inform-

ation from a wide variety of formats, specified by a character mask parameter.

When users do not specify all the date and time components for parsing, the

API is forced to adopt default values for the non-specified parts. In this bug

report, a user tries to parse the date ‘02/29 08:15’ using the format ‘MM/dd

HH:mm’ (i.e. ‘month/day hour:minute’). As the year is not specified, a default

value is adopted in the parsing process.

In his abductive reasoning, the user inferred that the default year, when

not specified, is the current year. However, Java adopts the Unix tradition of

representing dates as the number of seconds since 1970-01-01 00:00:00 GMT.

Therefore, the default value used for an ‘empty’ year value is 1970.

The user complains in the bug report about the unexpected API beha-

vior, because it raises an exception to indicate parsing error. From the user’s

perspective, this should be a legal date. The interesting detail about this re-

port is that the exception only occurred because the date to be parsed was Feb

29th, which is valid only in leap years. The report was created in 2012, a leap

year, which made the user think that it should be parsed into a valid date (29

Feb 2012). If the user tried to parse a more ordinary date (for instance, Feb

28th), no exception would have been raised, and the date would be ‘silently’

parsed as ‘28 Feb 1970 08:15:00’. This is also an example of lenient behavior

associated with the need for default values (see subsection 5.3.2).

Java classes that deal with date and time representation and operations

are notorious sources of trouble to many programmers, as evidenced by

collected data from bug reports. Articles from programming forums like Stack

Overflow, for example, also illustrate the difficulties users face when dealing

with date and time in Java. A question about string to date conversion in

Java4 has been viewed more than 530k times5.

Concerning default values for date and time parsing, an interesting

approach has been adopted by an alternative implementation of date and time

classes for Java, a library called ‘Joda Time’6. Due to the variety of problems

3https://bugs.openjdk.java.net/browse/JDK-8017133
4http://stackoverflow.com/questions/4216745
5All links to web sites in this chapter were visited as of Feb. 2015
6http://www.joda.org/joda-time/

https://bugs.openjdk.java.net/browse/JDK-8017133
http://stackoverflow.com/questions/4216745
http://www.joda.org/joda-time/
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 101

associated with Java’s native date classes, this library gradually became a

popular substitute for Java’s original API. Joda Time’s class for date format

specification allows users to query and change the default year used in parsing.

Besides allowing the customization of default values, this kind of approach

turns the default value a first-class concept in the API, and not an ‘almost

missed’ aspect of its behavior.

It should be noted that the adoption of default values to allow ‘underspe-

cification’ of API behavior is not, by itself, a problem. However, it is important

that designers be aware of the pragmatic consequences of using and choosing

proper default values and behavior in situations like the one described in the

example above. It is the nature of epistemic tools like the ones proposed in

section 5.2 to raise designers’ awareness about the trade-offs and possible con-

sequences of certain design decisions, allowing them to develop a deeper under-

standing of the problem at hand and make choices based on a more informed

reasoning.

5.3.2
Lenient behavior

As noted in the previous subsection, a possible consequence of having

a narrow protocol to interact with API’s features is the adoption of a lenient

behavior. This means that the API is more tolerant with respect to inconsistent

or erroneous situations, by making adjustments as needed to restore its state.

In order to restore the artifact’s consistency, designers adopt some policy

to circumvent error states and ‘correct’ improper use of API’s services. The

main consequence of this approach is that, by not telling users about the

erroneous or inconsistent state, the fact that something has been changed

or ‘silently corrected’ may be the source of user’s misunderstandings about

the post-conditions of API’s operations. This is a recurrent reason for users’

complaint in bug reports.

Once again, date APIs are a common source of communicability issues

associated with lenient behavior. Both Java and PHP libraries show lenient

behavior that is a frequent cause of misunderstandings, misuse or declining

effects on programmers. Java Date class even allows turning the lenient mode

off, but as the default mode is ‘on’, this is also an often missed affordance in

the interface.

PHP bug 662017 is an interesting evidence of this issue, with an eloquent

user statement about his expectations when trying to create a DateTime object

from an invalid date:

7https://bugs.php.net/bug.php?id=66201

https://bugs.php.net/bug.php?id=66201
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 102

“Actual result: Date is ok. (converted to 2015-03-25 10:57:26 which is

weird but ok. can swallow that although it doesn’t make any sense to calculate

a “real” date from 25.27.2013 input to begin with).”

PHP bug 545248 provides more evidence of how leniency influences

API metacommunication, this time related to the conversion of string to

integer values (function intval()). This function takes a string as the single

parameter, and returns an integer corresponding to its numerical conversion.

However, when the string representation contains a number that is greater than

PHP’s maximum integer value, the function returns this maximum value. User

complains about not being notified of the error condition:

“In my opinion, throwing a Warning would be more intelligent than

returning 2 ˆ 31-1. It is an Error because it offends Mathematics. A function

with different arguments, in this case should return different results, BUT UP

TO NOW, it may return always 2ˆ31-1. Can’t anyone else see this ? The way

it is today turns PHP into a ‘hiden bugs’ language.”

A question in Stack Overflow also illustrates the difficulties associated

with the use of the intval function: “PHP: intval() equivalent for numbers >=

2147483647”9.

Lenient API behavior’s influence on metacommunication should be con-

sidered with the template’s components in mind, in order to promote a reflec-

tion about its corresponding effects on users’ preferences and needs. Allowing

a choice between lenient or strict behavior is a viable alternative, letting users

select the most adequate behavior to their context. However, either way, API

behavior should be clearly stated by a careful combination of metacommunic-

ation elements to prevent users from misinterpreting API’s signs.

5.3.3
Implicit or ambiguous metacommunication

When creating an API, designers make a number of decisions to signify

their intent using the various metacommunication elements discussed in sub-

section 5.2.1. Depending on these choices, metacommunication can cause ‘side

effects’ in user’s interpretation, by carrying unintended or implicit meanings

represented by expression elements.

As an example to illustrate this concept, Java provides a class named

Properties10 that implements a basic mechanism to store configuration items

in the form of key-value strings. A closer examination of the Properties

class shows us that it derives from the HashTable class. In object-oriented

8https://bugs.php.net/bug.php?id=54524
9http://stackoverflow.com/questions/990406

10http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

https://bugs.php.net/bug.php?id=54524
http://stackoverflow.com/questions/990406
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 103

programming, inheritance is defined as a ‘is-a’ relationship between classes,

i.e., if class B is a subclass of class A, this should mean that every object of

type ‘B’ can be used where an ‘A’ is expected.

Therefore, by specifying that Properties is a subclass of HashTable,

designers adopted a strategy that privileged convenience of implementation

(by inheriting features and methods). However, the implicit (and unintended)

message that may be received by users is that ‘every Properties object is also

a HashTable object’, which enables the use of class HashTable’s methods.

There are Java bug reports (e.g. 417609411, 421228012, 804321913) classi-

fied as ‘not an issue’ that contain evidence illustrating the above explanation.

In bug report 8043219, the evaluator’s response shows the effect of this ‘impli-

cit’ metacommunication:

“Because Properties inherits from Hashtable, the put and putAll methods

can be applied to a Properties object. Their use is strongly discouraged as they

allow the caller to insert entries whose keys or values are not Strings. The

setProperty method should be used instead.”

Lastly, we may characterize this Java example as an ambiguous use

of the structure metacommunication element, since API designers created

a potentially ambiguous interpretation by using inheritance to specify the

Properties class. This is an aspect of API design that, if overlooked, may

affect negatively users’ interpretation of its intended purposes.

Another example of the influence of implicit or ambiguous metacommu-

nication on API use comes from a type of problem frequently found in PHP

bugs. Some array-based functions expect single dimension arrays as parameters

to perform their work. However, these functions do not work well when called

with multidimensional array arguments, and the documentation is sometimes

silent about this fact. Two bug reports illustrate quite well the effects of not

being explicit about intended behavior. In bug 1189314, the evaluator replies:

“array intersect isn’t supposed to handle multi-dimmed arrays. Where have you

read that? Not in the manual in any case.”

In bug 5233615 (“You can’t use multidimensional arrays in functions

which support arrays”), user complains about documentation omitting this

behavior:

“The documentation for functions like str replace says, that you can use

an array as subject. Multidimensional arrays are not excluded, but if you use

11https://bugs.openjdk.java.net/browse/JDK-4176094
12https://bugs.openjdk.java.net/browse/JDK-4212280
13https://bugs.openjdk.java.net/browse/JDK-8043219
14https://bugs.php.net/bug.php?id=11893
15https://bugs.php.net/bug.php?id=52336

https://bugs.openjdk.java.net/browse/JDK-4176094
https://bugs.openjdk.java.net/browse/JDK-4212280
https://bugs.openjdk.java.net/browse/JDK-8043219
https://bugs.php.net/bug.php?id=11893
https://bugs.php.net/bug.php?id=52336
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 104

them nothing happens. This bug is reproducable with ALL functions which

should support the use of array. If this is wanted behaviour you should edit

the documentation.”

While evaluator replies:

“This isn’t a bug. The documentation says you can pass an array of

needles and an array of replacements. It’s just common-sense that these

needles/replacements would be scalar types (not an array).”

This evaluator’s statement is an evidence of how implicit metacommu-

nication and ambiguity may affect users: what is common sense to some people

may not be obvious to others. This topic can also be analyzed from the common

ground perspective, as discussed later in subsection 5.3.7.

5.3.4
Use of figurative speech: metaphors and metonymies

Figures of speech like metaphors and metonymies can be a powerful

resource to enhance communicability, especially if taking into account that

formal representation of APIs generally consists of a concise ‘message’. Even

not being aware of it, API designers frequently use this communicative resource

to express API’s features. However, as mentioned in subsection 5.2.1, the use

of metaphors and metonymies may also affect users’ interpretation negatively.

A simple example of a dubious choice of name is the Java File class16.

At first, one can think that it metaphorically represents a physical file stored

in the file system. However, as defined in the documentation, it is “an abstract

representation of file and directory pathnames”. This means that it is not

possible to read or write a File object in Java. This ‘broken metaphor’ is

really a metonymical representation of a file name, not the actual object.

However, this abstract representation of a file path is also somewhat broken,

since different representations of the same file path are considered different

objects (e.g. absolute and relative representations of the same file path are

not equal in the File class abstraction). This can be a problematic use of a

metonymical representation, since references to the same conceptual object

are considered different objects. The effect on users caused by this type of

communication issue can be described in terms of the ‘abstraction level’ and

‘role expressiveness’ cognitive dimensions (see section 3.2).

Java bug id 409402217 illustrates a problem of this metonymical repres-

entation of a file path name. In this report, the user complains about the use of

method File.renameTo(). After calling the method, the user expects the phys-

16http://docs.oracle.com/javase/7/docs/api/java/io/File.html
17https://bugs.openjdk.java.net/browse/JDK-4094022

http://docs.oracle.com/javase/7/docs/api/java/io/File.html
https://bugs.openjdk.java.net/browse/JDK-4094022
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 105

ical file to be renamed, as well as the File object’s internal path representation.

However, only the physical file name changes. The bug report evaluator answer

follows below, confirming that the metonymy does not fully hold:

“Not a bug. An instance of the File class represents a file name, not the

file that it names.”

Another example comes from PHP bug id 6727218: user complains that

class Pathinfo does not state failure information. The evaluator’s reply says19:

“This function has nothing to do with filesystem. It just parses string in

order to extract path-specific elemens. Path doesn’t have to be existing one,

as it is treated just like a string. Maybe we should make it more clear on doc

page...”

In these bug reports, users’ interpretation of API’s affordances is based

on a contiguity relation between the object instance and the physical object.

As this metonymical relation does not exist, this ambiguous definition of the

API should be resolved by changes in the metacommunication elements that

compose the designer’s message.

Lastly, Java bug 801423820 also provides evidence of a bad choice of

metaphorical representation. In this report, a user complains about an error

in the documentation of class ProcessBuilder. Documentation states that, in

order to get the subprocess’s standard output stream, one should call method

Process.getInputStream(). The user suggests that the correct text would refer

to method Process.getOutputStream(). However, the evaluator replies:

“The Java documentation describes the world correctly. There is the

difficulties with the naming of streams. The naming is right from the parent

process point of view, so the the [Process.getInputStream] in the parent end of

pipe that can be used for reading of child std output”.

A question in Stack Overflow (“Java Process getInputStream vs. getOut-

putStream”)21 about this very issue contains interesting users’ comments that

enriches the discussion of communicability aspects involved:

[answer] “You are using names that make sense in the context of the

spawned process. But the API names make sense in the context of the parent

process.”

[comment] “I find it very confusing to, not to say flawed. Isn’t it a core

Object-Oriented design-pattern to name methods in the context of the object

that offers this method?”

18https://bugs.php.net/bug.php?id=67272
19original mistakes kept in text
20https://bugs.openjdk.java.net/browse/JDK-8014238
21http://stackoverflow.com/questions/4228853

https://bugs.php.net/bug.php?id=67272
https://bugs.openjdk.java.net/browse/JDK-8014238
http://stackoverflow.com/questions/4228853
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 106

Considering these findings in the context of the research question, the

use of figurative speech in API language representation is clearly a powerful

resource to designers. However, it should be carefully analyzed from a commu-

nicative standpoint to prevent it from affecting users’ interpretation negatively.

5.3.5
Documentation as API metacommunication

Documentation is a fundamental part of most APIs, despite being

considered a secondary source of information for ‘active programmers’. Some

API usability studies regard documentation as a separate entity, focusing on

software-only artifacts that compose the API (mostly source code), e.g. (51).

A perspective on APIs that brings designers and programmers as inter-

locutors in a communication process cannot leave documentation out of the

scope of investigation. Documentation is a key resource designers have at hand

to extend the API’s expressiveness through a complementary signification sys-

tem which references the API’s signification system (which constitutes the API

code and its interfaces). This does not mean that documentation should be the

way to compensate for poor choices in lexical, syntactic and semantic levels

of the formal language. These levels deserve a good deal of attention of their

own. However, the pragmatics of APIs relies mostly on documentation, as it

combines natural and formal languages to provide users with the envisioned

scenarios, proper contexts and patterns of use, limitations, and so on. It is the

opportunity designers have to ‘fill in the blank’ left behind by formal language

discourse.

In addition, more than just being available as a secondary source of

information, documentation should help to eliminate ambiguities and provide

completeness to the overall API metacommunication. The full set of quality

attributes discussed in subsection 5.2.1 can be observed to contribute to the

design of good documentation content.

Evidence from empirical data collected reinforces the relevance of good

documentation for programmers, especially when it comes to code examples.

The Java API, for instance, has adopted a strategy to create two types of

documentation: tutorials and reference. The general rule is that only tutorials

contain code examples. However, tutorials are more suitable for learning

general API concepts, while regular programming relies mostly on reference

documentation. A number of Java bug reports show that programmers would

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 107

like to have short examples in reference documentation (e.g. 22 23 24 25). In bug

4090313 (“Add code examples for methods in the API docs”), the reporter

provides an interesting motivation for his request:

“As a former Visual Basic developer, I found the sample code in online

help an invaluable tool for learning how to use the language. Please consider

adding this feature to your documents.”

Users’ preference for having code examples along with reference docu-

mentation has both communicability and usability advantages. First, it con-

tributes to a more effective metacommunication, since code examples convey

‘authorized’ patterns of API use, and help to prevent ambiguous interpreta-

tions. From the usability side, having short code examples near to reference

documentation contributes to better visibility, in terms of the cognitive di-

mensions framework. It also favors role expressiveness, since examples show

concrete uses of an API entity.

An additional finding related to the role of documentation in metacom-

munication can be observed in evidence that comes from many PHP bug re-

ports. PHP reference documentation presents each API function in a stand-

ard format, which describes its parameters names and expected types. It also

describes return types for successful and error conditions. However, when a

program makes a function call with an invalid parameter, there is a consist-

ency layer responsible for parameter checking in the API that returns NULL

every time it finds a problem with a parameter. This is mentioned in a single

page in the language documentation26, but not in the documentation of each

and every function affected by this check, which would be not only useful but

necessary, as evidence suggests. According to many user reports, this is not an

easily perceived ‘affordance’ in the API27 28 29 30. Evidence from these reports

make it clear that redundancy, in this case, should be part of the documenta-

tion strategy to avoid this ‘missed effect’ on users. For instance, bug 65986 has

been submitted by a language contributor (email address in php.net domain),

and contains the following excerpt:

“Never noted that NULL behavior as a generality like that, so that’s

good to know. I had been writing test cases for error handling code and

“oci fetch all(null)” seemed to be the simplest manner to get the expected

22https://bugs.openjdk.java.net/browse/JDK-4090313
23https://bugs.openjdk.java.net/browse/JDK-4143455
24https://bugs.openjdk.java.net/browse/JDK-4148276
25https://bugs.openjdk.java.net/browse/JDK-4213311
26http://php.net/manual/en/functions.internal.php
27https://bugs.php.net/bug.php?id=60391
28https://bugs.php.net/bug.php?id=65362
29https://bugs.php.net/bug.php?id=65986
30https://bugs.php.net/bug.php?id=67038

https://bugs.openjdk.java.net/browse/JDK-4090313
https://bugs.openjdk.java.net/browse/JDK-4143455
https://bugs.openjdk.java.net/browse/JDK-4148276
https://bugs.openjdk.java.net/browse/JDK-4213311
http://php.net/manual/en/functions.internal.php
https://bugs.php.net/bug.php?id=60391
https://bugs.php.net/bug.php?id=65362
https://bugs.php.net/bug.php?id=65986
https://bugs.php.net/bug.php?id=67038
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 108

FALSE return (...) so I presumed this different behavior by oci fetch all() was

a bug. Thanks for the explanation.”

There are also interesting replies from users in bug reports 60391 and

65362:

“Oh, that’s cute. I’ve been developing apps with PHP for 5+ years and

now this is first hearing of such ‘built in’ feature for me. Really nice. Good

docs. Very intuitive. I think I’m starting to think about giving up PHP and

move to something more life-ready (read - ’enterprise-ready’).”

“Yes, I realize this is common behaviour, and not as such a bug in PHP.

That is why I originally categorized this as a documentation bug. The problem

isn’t PHP’s behaviour, it’s that the documentation on the functions I mentioned

is misleading about the return type. There is no mention of the possibility of

a null return, and while you may get away with not mentioning this fact for

most functions, in the case of these particular functions, it can easily lead to

unpredictable and hard to find bugs.”

Many studies highlight the key role of good documentation and code

examples in users’ process of learning an API. In 1998, McLellan et al. (30)

concluded in their studies that code examples were a good way to demonstrate

a library’s capabilities, “allowing the programmers to form hypotheses about

the library itself as well as the code example”. This is in accordance with the

abductive reasoning description of user’s signification process, as discussed

earlier. Also, Robillard and DeLine (17) concluded in their study about

API learning obstacles that documentation of intent, code examples and

matching APIs with scenarios are among the most relevant aspects of API

documentation. Therefore, findings presented in this section corroborate with

related work, providing new perspectives and deeper comprehension of existing

knowledge.

5.3.6
Envisioned scenarios

Programmers usually search for APIs as a ‘shortcut’ to accomplish a

higher goal. As such, learning inner details of APIs are not part of ‘the goal’,

just a step towards it. Thinking APIs in terms of scenarios help designers

to envision common uses for the software artifact under construction. In this

context, the metacommunication template provides a structured view of the

components that influence these scenarios.

In order to illustrate the role of scenarios to help users accomplish their

tasks, a simple question “How do I check if a file exists in Java?” has more than

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 109

337k views in Stack Overflow 31. This is an example that even basic tasks may

not be trivially inferred from documentation, and that users frequently search

for ‘how to’s’ that match their goals. However, providing examples for all use

cases of an API may be too costly, not to say impossible. This is an additional

trade-off designers should take into account in the semiotic engineering of APIs.

Date and time operations belong to one of the most recurrent domains

that affect users due to the lack of useful scenarios in documentation (at least

considering evidence from the analyzed data). A plausible explanation for this

is the fact that date and time representation and operations belong to an

‘ordinary domain’, which is part of our daily lives and is assumed to be well

known by most programmers. However, there are lots of subtle details in this

domain that may affect API learning and use. Users’ abductive reasoning when

dealing with technology can also help us to understand this phenomenon. In

the case of a ‘familiar’ domain like date and time, users can easily formulate

hypothesized rules about API behavior, since they (probably) know what the

goals of a date-time API are. In addition to this potential ‘active behavior’

from users, the date-time domain familiarity may be a reason for designers to

spare themselves from providing basic scenarios of use in documentation.

A typical example of the common difficulties users face with date and

time operations is adding or subtracting months to a date. When the result

of the operation falls near month limits, the operation can be the source of

ambiguous interpretations. This issue is also related to leniency problems, as

discussed in subsection 5.3.2. PHP bug id 64052 (“PHP DateTime Add and

sub”)32 provides interesting evidence to support this finding. In the report,

a user complains about API behavior when attempting to subtract a month

from date ‘2013-03-31’ and obtaining the result ‘2013-03-03’. The bug evaluator

replies:

“This has been filed so many times, and it’s still not a bug. For a full ex-

planation, see: http://derickrethans.nl/obtaining-the-next-month-in-php.html”

From the evaluator’s response, we can conclude that adding and sub-

tracting months to a date is a common user goal (as expected), and yet, it is

the cause of trouble to many programmers, especially in PHP.

Java also provides evidence of communicability problems in date and

time APIs associated with the lack of common scenarios. For instance, Java

bug 8037392 (“Period.between() returns incorrect value”)33 illustrates the

difficulties faced by users when dealing with time period calculations. In this

report, user shows an understanding of the method Period.between() that

31http://stackoverflow.com/questions/1816673
32https://bugs.php.net/bug.php?id=64052
33https://bugs.openjdk.java.net/browse/JDK-8037392

http://stackoverflow.com/questions/1816673
https://bugs.php.net/bug.php?id=64052
https://bugs.openjdk.java.net/browse/JDK-8037392
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 110

differs from its actual behavior. It calculate the difference between two dates,

and the user expects the operation to be symmetric. However, this is not

the case, because it calculates the period in terms of its ‘conventional’ parts

(months, days, hours, etc.). According to the evaluator:

“[user] appears to want a rule where the days are calculated based on the

original month length, not the one that results once the month-year difference

is applied. The OP [user] is not wrong, its just that its not how we choose to

make the calculation in java.time.”

This is also a case in which code samples could help eliminate the

misinterpretation of the API’s meanings, by making clear this type of boundary

condition.

The role of scenarios is an addition to the discussion related to document-

ation presented in subsection 5.3.5. They provide a higher level and concrete

description of the intended API’s goals, as paraphrased by the metacommu-

nication template. Also, they contribute to the consolidation of a “rule of pro-

gramming discourse” (31) by providing patterns to be reused by programmers

in order to achieve a range of common goals.

5.3.7
Common ground

Effective communication relies on shared knowledge and assumptions

between interlocutors. In the context of API metacommunication, shared

knowledge comprehends at least basic computer science and programming

language concepts, and also domain-specific knowledge, depending on the

services provided. Shared assumptions can be associated with cultural aspects

of programming like, for instance, conventions and styles commonly adopted

by the API language community and programmers in general.

These elements provide the common ground that allows mutual under-

standing between API designers and users. Violation of the principles that

govern this shared knowledge and assumptions can affect metacommunication

effectiveness. In programming, common ground between people can be negat-

ively affected when computer’s needs are privileged, optimizing time and space

dimensions of program execution without taking into account possible effects

on programmers.

A well-known example of violation of common ground in the Java API

is the Date class. This class uses a zero-based representation for months, in

which 0=Jan, 1=Feb, and so on. Therefore, code using the Date class can be

very misleading, like the following sample:

The execution of this code produces the output string ‘Wed Mar 03

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 111

Date d = new Date (2015, 1, 31);

System.out.println(d.toString ());

00:00:00 BRT’34. Strange as it may seem, this output string results from the

combination of zero-based month representation with lenient behavior. The

parameters are interpreted as ‘Feb 31’, an invalid date that is automatically

adjusted to a consistent date representation, i.e. ‘Feb 31’ is interpreted as ‘Feb

28’ + 3 days, which equals ‘Mar 03’). In spite of being a notorious case of

bad API design, this is a simple example to illustrate that violating people’s

beliefs and assumptions may have severe impact on API communicability and

usability.

It is quite common to find bug reports in Java associated with this issue,

and closed as ‘not an issue’. For instance, in bug 695380935 a user submits

code based on the Calendar class (which also uses a zero-based representation

for months). User assumes that his code is correct (an instance of ‘Looks fine

to me’ failure – see 5.2.3), and blames the API for the wrong output. He

complains about the severity of the (supposed) bug: “This is a serious bug if

used for commercial applications! I want to use it for astronomy and it produces

garbage”.

The Java Calendar class provides another example of the effects of

disregarding user’s knowledge and assumptions in API metacommunication.

The class provides two generic methods, set() and get(), that respectively sets

and gets the values of each date component: year, month, day, and so on.

However, it shows an unusual behavior, since the object’s internal fields are

recalculated only when a call to get() occurs. This can be a source of surprise

and misunderstanding to many users, as evidenced in bug reports analyzed. For

instance, in bug 707233736 (“Call to Calendar.get() affects the calendar date

and becomes incorrect”), user is puzzled by a side effect of calling method

Calendar.get() in the code. He states:

“Both parts are exactly the same except for the call :

c1.get(Calendar.WEEK OF YEAR). Whatever a Java object is, doing a

get on it should NEVER affects its state.”

A number of problems with APIs can be associated with grounding issues,

and many of them have well known causes, like the ones discussed in this

subsection. However, a communicative perspective provides a different framing

for this category of problem, contributing to new insights and greater awareness

34the ‘BRT’ part may vary, according to the default time zone
35https://bugs.openjdk.java.net/browse/JDK-6953809
36https://bugs.openjdk.java.net/browse/JDK-7072337

https://bugs.openjdk.java.net/browse/JDK-6953809
https://bugs.openjdk.java.net/browse/JDK-7072337
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 112

about its nature.

5.3.8
Specific domain concepts

This subsection deals with a subject that is, to some extent, a special

case of the previous discussion about common ground. However, differently

from the previous topic, this subsection deals with findings that refer to more

specific domains, external to the programming environment and governed by

its own conventions or formal rules. In this context, two types of implications

for API metacommunication have been identified.

First, the use of concepts from external domains in APIs should observe

the domain’s terminology and conventions, in order to prevent users from

missing API’s affordances, or misunderstanding them. As an example, Java

provides a Set interface that defines the implementation of various collection

classes with set semantics. The Set interface documentation37 describes it as a

model of the mathematical set abstraction. However, common set operations

are defined by unusual names. For example, intersection of two sets is obtained

by calling method Set.retainAll(). Java bug report 4154473 (“Add difference

operation to Collections”)38 provides evidence showing that user missed Set

interface’s affordances:

“The Set class claims to represent the mathematical set operations, but

it does not have any methods to find the intersection, union, or difference of

two sets. Can these enhancements be added?”

The second situation occurs when an API refers to specific standards

or conventions that may not be widely known. When this is the case, users

may create wrong assumptions about API behavior. A recurring example of

this issue is the implementation of the ISO 8601 standard for exchanging date

and time data, especially with respect to week numbering. In spite of being a

formal standard, it recommends a way of numbering weeks of the year that is a

frequent source of astonishment and misunderstanding among API users, both

from Java and PHP. For example, PHP bug 6569439 contains the following

user statement:

“For an internet tool I need to get a list of weeks after having selected

one year and one month. By testing I found a BUG in the year 2016. PHP

gives me: 1 January 2016 the number of week: 53 (instead of 1) January 31,

2016 the number of week: 4 (instead of 5)”

The following excerpt shows the evaluator’s reply:

37http://docs.oracle.com/javase/7/docs/api/java/util/Set.html
38https://bugs.openjdk.java.net/browse/JDK-4154473
39https://bugs.php.net/bug.php?id=65694

http://docs.oracle.com/javase/7/docs/api/java/util/Set.html
https://bugs.openjdk.java.net/browse/JDK-4154473
https://bugs.php.net/bug.php?id=65694
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 113

“This seems to work just fine. PHP uses the ISO8601 calendar which in-

deed has a week ‘2015-53’ for the period Mon Dec 28, 2015 to Sun Jan 3, 2016.

Please see http://en.wikipedia.org/wiki/ISO week date for more information.”

Metacommunication issues associated with lack of knowledge about

formal standards may be viewed as users’ fault, by not reading its specification.

But, again, users formulate strong hypotheses in their abduction when dealing

with more familiar domains. And sometimes standards contradict ‘common

sense’. Being aware of these aspects’ possible implications, API designers can

make an extra effort to effectively communicate their decisions with respect to

the use of standards.

5.3.9
Identity and comparison

Issues concerning aspects of object identity and comparison are among

the most frequent topics found in the analyzed bug reports. Most of these

bug reports show closer association with programming language issues, as

the language is responsible for the basic rules which define how entities are

compared in a program. Therefore, API designers should carefully examine

the interaction between an API and its underlying programming language,

since the language defines the lexical, syntactic and semantic basis for API

construction and use.

In this context, there is evidence from empirical data that provides

insights about the nature of the problems that may occur with respect to

identity and comparison aspects. For example, Java bug report 706030940

shows a user complaint about methods Timestamp.equals() and Date.equals()

breaking the symmetry of the comparison operation. According to the

user, “a comparison Date.equals(Timestamp) results in true, the comparison

Timestamp.equals(Date) results in false”. The evaluator provides a reasonable

explanation for this behavior, but this is certainly a subtle and misleading API

behavior that could have been avoided.

The PHP language has lots of comparison issues that affect how its APIs

behave in this context. Due to its loose typing and comparison characteristics,

many PHP API operations surprise users with unexpected behavior with

respect to parameter and return values. As a consequence, some API operations

offer two kinds of type comparison: loose or strict. As a general rule, loose

comparison is the default behavior, for backward compatibility reasons.

Bug 66583 (“array search always returns 0 for string elements for a mixed

40https://bugs.openjdk.java.net/browse/JDK-7060309

https://bugs.openjdk.java.net/browse/JDK-7060309
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 114

type array”) 41, for example, shows a surprised user with the behavior of

function array search() when searching for a string in a mixed type array.

The array search() function has three parameters: needle (what to look for),

haystack (an array where ‘neddle’ will be searched), and strict (boolean that

indicates if comparison should be ‘strict’, default is ‘loose’). The main problem

is that the strict parameter is, by default, false, and loose comparison returns

true when comparing any string to integer value zero.

In the report, user does not perceive the ‘strict’ parameter and its

semantics, and gets unexpected results when searching for a string in an array

that contains zero as an element. After receiving an explanation about this

parameter and the API behavior, user replies:

“From the user perspective (which is mine), I don’t follow the logic.

So, yes, I did read the array search() documentation. But, in my case, the

documentation didn’t helped me. However, I must admit, that I wasn’t smart

(or idiot) enough to say to myself: ”hey! There is this ’strict’ option here.

Just give it try, even if it’s not obvious that it’s sensible.” In other words,

the documentation may be more explicit about what is strict and loose search

cases.”

The array search() example may be as well regarded as user error, for

a careless reading of documentation and not perceiving the strict parameter.

However, this is a common mistake with potentially severe impact on the

stability and correctess of programs that use it. Even when users are aware

of this condition, lapses may occur, which is associated with the cognitive

characterization of the ‘error-proneness’ dimension. Additionally, this same

issue affects other functions in PHP. In hindsight, API designers would

probably adopt a different strategy for this decision if they had the opportunity

to redesign the API (or the language).

5.3.10
Classification of collected evidence

This subsection presents the results of bug reports’ classification accord-

ing to the process described in chapter 4 and the criteria detailed in section

5.2. The main objective is to provide a qualitative view on the distribution of

bug reports after their categorization, exploring existing relations among these

categories. Since the data sample is composed of a non-randomly selection of

bug reports, is not suited for statistical analysis. However, the co-occurrence

of certain patterns provides interesting insights about the nature of collected

data under a communicative perspective.

41https://bugs.php.net/bug.php?id=66583

https://bugs.php.net/bug.php?id=66583
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 115

The first classifications of bug reports provide an overview of results for

each category previously discussed: failures, template components, effects and

cognitive dimensions. Then, we examine the combination of categories in multi-

level data aggregations to investigate the main co-occurrences and discuss

their interpretation. The presentation of results follows the same order used

in the investigation process: first, we identify users’ communicative failures

(the entry point in bug reports’ analysis), followed by the classification of

metacommunication intent (template components) and its effects (effect type

and cognitive dimensions associated).

Bugs per failure type

Subsection 5.2.3 described the tags used to characterize the communic-

ation failures that may occur when users try to understand an API’s design.

These tags offer a detailed diagnostic of possible users’ breakdowns, based on

symptoms associated with complete, partial or temporary failures.

Figure 5.7 depicts the distribution of the analyzed bug reports according

to the classification of their failure tags. As each bug report can be associated

with more than one tag, some bugs have been counted in more than one

category. For instance, there were many cases of bug reports associated with

three tags, as follows: 1) the user presented code that, in her opinion, should

work as expected. This is interpreted as a complete failure (‘looks fine to

me’); 2) the code presented by the user can also be interpreted as a temporary

failure (‘why doesn’t it?’), which occurred while the user tried to use the API’s

features, without success ; 3) if the user provides a ‘workaround’ to the problem,

this represents a partial failure (‘I can do otherwise’).

Why doesn't it?

Looks fine to me

Thanks,
but no,
thanks

I can do otherwise

I give up

What happened?

Where is it? Help!

Figure 5.7: Bugs per communication failure

The most frequent tag in the failure classification was ‘why doesn’t

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 116

it?’ (a temporary failure in which user tries to clarify the API’s intended

signification by autonomous sense making). This may be explained, in part,

by the interpretation given to the tag in the context of the bug reports’

analysis. This tag has been associated with a number of bug reports that

contained source code showing the user’s attempt to make the API feature

work as expected, without success. In most cases, tag ‘why doesn’t it’ was the

symptom of a temporary failure that preceded a complete failure, in which the

user thought that her code was correct (‘looks fine to me’), or when the user

reached a dead end (‘I give up’).

The second most frequent tag identified was ‘looks fine to me’, which

characterizes a complete failure. This was the most severe communicative

breakdown, since the user wrongly assumes to have accomplished her goal,

without being aware that there has been a failure in the communication with

the API. This is consistent with the nature of the collected evidence, since bug

reports that receive a ‘not a bug’ classification commonly involve a situation

in which the user is convinced that the ‘problem’ is on the API’s side, and that

the code provided should work as expected.

The next most frequent failure corresponds to the ‘thanks, but no, thanks’

tag. It represents the cases in which the user understands the design solution

available, but rejects some of its aspects. This may occur when an API provides

an affordance which conflicts with the user’s expectations, or when it lacks an

affordance which is expected or assumed to be available by the user. It also

applies to situations in which an API is used in unexpected or unintended

ways.

Lastly, it should be noted that the number of bug reports in which the

user presented a workaround (‘I can do otherwise’) is smaller than other types

of failures, which indicates that a number of users could not (or have not tried

to) find an alternative way to accomplish their goal.

Bugs per template component

As previously mentioned, the metacommunication template components

paraphrase the designer’s intent behind the construction of an API. In the

course of the evaluation of bug reports, the classification of each bug’s template

components comprehended the examination of the content of the user’s and

the evaluator’s discourse contained in the report, as well as the analysis of

comunication breakdowns. The main objective of this classification was the

selection of template components that corresponded to aspects of design intent

that could have affected API metacommunication, as evidenced by the situated

API use specified in the bug report.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 117

What do they know?

Strategies

Goals

What do they value?

Styles

Productivity

Boundary
conditions

Personal
motivation

Limitations Where are they?

Figure 5.8: Bugs per metacommunication template component

Figure 5.8 shows the distribution of bugs per metacommunication tem-

plate component. Once again, the sum of all bug reports per category exceeds

the total number of reports, since there are cases in which the report is asso-

ciated with more than one component.

The most frequent template component in the analysis of bug reports

was ‘what do they know?’. It describes two types of events: 1) user lacks

knowledge about some aspect of the API or the domain, which could possibly

be more effectively signified in API metacommunication; 2) user’s previous

experience and knowledge may have influenced her interpretation about the

API’s affordance being discussed. This emphasizes the need to take into

account the knowledge required from a typical user to understand an API’s

affordance. It is also a hint for the importance of previous users’ experiences

and knowledge in the conduction of their abductive reasoning while interacting

with a new API.

The second most frequent component was ‘strategies’, associated with

situations in which there is a mismatch between design intent and user’s

preferences in the selection and combination of API and language elements

to accomplish the intended tasks. It was closely followed by the ‘goals’

component, which corresponds to reports in which the API design does not

properly fit user’s objectives, either by not solving the user’s problem as

expected, or by not offering the required affordances. Both of these parts of

the template are commonly associated with mismatches between the API’s

intended scenarios of use and users’ needs and preferences. Metacommunication

enhancement through the provision of clear scenarios and examples of API use

may contribute to reduce misinterpretations associated with these categories

of intent.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 118

Still among the most representative findings in the intent dimension, the

‘what do they value?’ component was used to indicate conflicts between design

intent and aspects that users consider as relevant when it comes to using an

API effectively. For instance, adherence to common programming conventions

is usually valued by users as an expected characteristic for an API, being a

common source of breakdowns when violated.

Bugs per effect type

The classification of effect type provides an indication of how API

metacommunication affected users in the situations that led to bug reports,

with respect to their perception and comprehension of its affordances. Figure

5.9 illustrates the distribution of bug reports according to their effect on users.

As described in subsection 5.2.2, there are two types of effects that do not show

up in this study: ‘successful’ and ‘unexpected’. The first type was naturally

excluded from the type of evidence collected, since it represents the absence

of communicability issues. The second type could not be identified in the bug

reports, due to its similarity to the ‘successful’ effect, with the distinction that

the API affordance surprises the user in some way (without being rejected).

Differently from previous categories, only the most evident effect type has been

associated with each bug report (i.e. one effect type per report).

misunderstood

declined

missed

misused

expected

Figure 5.9: Bugs per effect

According to the results, ‘misunderstood’ was the most frequently identi-

fied effect type. It applied to situations in which users did not fully comprehend

an API’s affordance, due to mismatches in their conceptual or semantic model

with respect to the actual API behavior. From a communicative perspective,

this result can be associated with two kinds of mismatches: 1) API communic-

ability is satisfactory, but user does not belong to the intended audience; 2)

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 119

user matches the envisioned audience profile, but API lacks some communic-

ability aspects. A third possibility is the combination of both problems (com-

municability issues, interlocutor mismatch). In the studies conducted as part

of this research, bug reports that clearly indicated user’s lack of basic know-

ledge required to understand API’s affordances have been discarded. This was

an attempt to exclude less representative evidence from the core dataset, dis-

missing cases in which communicability problems were essentially associated

with gaps in users’ programming education.

The second most frequent effect type was ‘declined’. This is, by itself, an

interesting result from a communicative approach to investigating APIs, since

it shows that it is not uncommon to find situations in which users actively reject

the proposed design. This effect usually corresponds to the communication

failure described by the ‘thanks, but no, thanks’ tag. There are cases in which

‘declined’ is preceded by a ‘misunderstood’ effect instance. For example, it

occurs when a user reports a ‘bug’ by misunderstanding the API design and,

after receiving an explanation by the evaluator, realizes how the feature works,

and rejects it for violating her preferences or needs.

The ‘declined’ effect, together with the diagnostic provided by the

‘thanks, but no, thanks’ tag, allows us to distinguish between two situations: 1)

user understands and accepts the API’s affordances; 2) user comprehends the

API’s features, but rejects at least some aspects of its design. This refinement

in the characterization of users’ reception of API metacommunication is not

usually accounted for from API usability evaluation studies. These studies are

mostly oriented to evaluate users’ ability to achieve their goals when learning

and using an API, apart from possibly existing mismatches between their

preferences and the actual artifact’s design.

The fact that more than half of the bug reports analyzed can be associ-

ated with understanding issues is an interesting result, especially considering

that bug reports which clearly revealed users’ lack of knowledge were discarded.

It means that the remaining bug reports are more ‘qualified’ with respect to

these misunderstandings, which reinforces the applicability of a communicative

approach to the study of APIs.

Bugs per cognitive dimension

The classification of bug reports with respect to the effect dimension also

included the characterization of cognitive impact on users. This classification

was based on the cognitive dimensions of notations, as described in subsection

5.2.2. The distribution of bug reports per cognitive dimension is illustrated in

figure 5.10. As a general rule, multiple cognitive dimensions were associated

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 120

with a single bug report.

Closeness of
mapping

Abstraction level

Consistency

Error-
proneness

Role
expressiveness

Hidden
dependencies

Visibility

Hard mental
operations

Diffuseness

Figure 5.10: Bugs per cognitive dimension

‘Closeness of mapping’ was the most frequent dimension listed in the

bug reports’ analysis, closely followed by ‘abstraction level’. As explained

in subsection 5.2.2, this dimension was interpreted by taking the users’

perspective, indicating that an API’s affordance did not represent domain

concepts in a way that could be easily grasped by the user. In the user’s

abductive process, what is close to the domain from the designer’s perspective

may not be as easily comprehended by the user, leading to interpretations that

are not compatible with the design vision, and possibly leading to a complete

failure.

‘Abstraction level’ issues occur when there is a clear impedance between

the features and operations provided by an API and users’ expectations and

interpretations of its design. It corresponds to situations in which users try

to use the API’s features to accomplish tasks that do not fit its envisioned

scenarios of use. It may also be the case that users face difficulties to understand

and use the API’s features because their goals rely on a higher level of

abstration than the one provided by the API. Abstraction level mismatches

may also refer to situations where users decline from API’s design. For instance,

sometimes users identify a ‘broken abstraction’ that makes knowledge of

its inner details necessary for its proper use. This may contribute to users’

rejection of the related API feature.

‘Consistency’ was the third most frequent cognitive dimension identified

in the studies. This dimension applies to bug reports illustrating situations in

which the user identifies traces of inconsistencies in API’s affordances that may

be associated with representational or semantic issues. Consistency issues are

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 121

also frequently related to user’s rejection of API’s features, since it sometimes

violate user’s preferences and needs (‘what do they value?’).

Lastly, ‘error-proneness’ was also among the most frequent cognitive

dimensions, and it was used to describe situations in which API’s affordances

could be easily misused or misinterpreted, offering little protection against

mistakes or lapses. In spite of being closely related to usability aspects of

API’s, error-proneness impact on users may be increased by communicability

issues that affect users’ interpretation of its features or behavior. For instance,

an API can be more error-prone when the combination of signs that encode its

meanings (static, dynamic and metalinguistic signs) is inappropriate, possibly

harming users’ interpretation of its design and contributing to errors.

Bugs per template component and effect

This subsection provides a two-level aggregation between the classifica-

tion of template components and metacommunication effects. The main ob-

jective is to support the analysis of co-occurrences of categories that may lead

to further insights. To provide an overview of these nested clusters of bug re-

ports, figure 5.11 depicts a treemap structure illustrating the aggregation of

bug reports per template component, and for each component, the most fre-

quent effects identified. The size of each box is proportional to the number of

elements in the set, and the color of inner boxes also reflects the number of

bug reports it contains (darker blue means a larger set, as also represented by

its size).

The diagram shows that the most frequent co-occurrence of intent

category and effect on users was (‘what do they know?’, ‘misunderstood’).

The ‘misunderstood’ effect also appears on the top position in the next

three template categories by size, ‘strategies’, ‘goals’ and ‘styles’. This is

consistent with the results previously described in this section, and reinforces

the importance of conducting users’ abductive reasoning to an interpretation

which is consistent with the artifact’s encoded design vision.

An interesting observation in the next two categories (‘productivity’,

‘what do they value?’) is the ‘declined’ effect appearing as the most frequent.

This is an indication that when API metacommunication does not match a

user’s profile, preferences and motivation for using it, there can be a negat-

ive effect on the user’s reception, who may end up looking for an alternative

solution. The ‘declined’ effect was also frequently identified in the top aggrega-

tions, indicating that is a common result of API metacommunication, at least

in the analyzed dataset.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 122

Figure 5.11: Bugs per template component and effect

Bugs per template component and cognitive dimension

Figure 5.12 illustrates a two-level aggregation by template component

(intent) and cognitive dimension (cognitive effect).

The ‘abstraction level’ and ‘closeness of mapping’ dimensions appear

in the top positions in the largest clusters of categories, confirming their

relevance as illustrated previously in the analysis of the cognitive dimensions.

An interesting result appears in the ‘what do they value?’ category, since

the top cognitive dimension is ‘consistency’. When compared to the previous

clusters (template x effect), the top effect in this category was ‘declined’.

This suggests that users tend to reject API features that provide inconsistent

representations or semantics. ‘Closeness of mapping’ appears next as the most

frequent cognitive effect that may lead users to reject the artifact’s design.

Bugs per template component and failure type

The next aggregation type presents the distribution of bug reports per

intent category (template component) and failure classification. Figure 5.13

provides an overview of the co-occurrences of communicative failures inside

the most frequent categories of intent.

The main cluster shows the top failures in the ‘what do they know?’

component: temporary failure ‘why doesn’t it’ and complete failure ‘looks fine

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 123

Figure 5.12: Bugs per template component and cognitive dimension

to me’. As previously discussed, ‘why doesn’t it?’ was a frequently identified

failure due to its association with sample code that revealed an attempt to

use the API. However, it usually preceded a partial or complete failure, which

also explains the high incidence of ‘looks fine to me’, due to the multiple

classification of failures in the reports.

The high occurrence of ‘looks fine to me’ failure corroborates with the

numerous ‘misunderstood’ effects in the template x effect aggregation. In

general, this complete failure occurs when the user is not conscious of failure,

which can be frequently explained by misunderstandings in the interpretation

of the designer’s discourse encoded in the API.

It should also be noted that in the ‘what do they value?’ category, the

partial failure denoted by the ‘thanks, but no, thanks’ tag appears in the second

position, after ‘why doesn’t it?’. This is consistent with the high number of

occurrences of the ‘declined’ effect in the template x effect aggregation. An

analogous result appears in the ‘productivity’ and ‘personal motivation’ boxes.

Bugs per template component, failure, effect and cognitive dimension

The last aggregation of results shows a four-level cluster of bug reports,

distributed by template component, failure, effect and cognitive dimension.

Due to space restrictions and the combinatorial effect, only the top 3 results

inside each category has been selected. Figure 5.14 presents a map of the results

reflecting this organization of data.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 124

Figure 5.13: Bugs per template component and failure type

The diagram shows three top level categories of intent (template com-

ponents): ‘what do they know?’, ‘strategies’ and ’goals’. In the first category,

despite the larger cluster being located in the ‘why doesn’t it?’ box, the ‘looks

fine to me’ failure shows more significant results, since it is a complete failure.

Inside this failure, we can see that the ‘misunderstood’ effect appears as the

most frequent, associated with the top cognitive impact descriptions: ‘close-

ness of mapping’, ‘abstraction level’ and ’error-proneness’. It should be noted

that the ‘why doesn’t it’ box shows a similar configuration with respect to the

‘misunderstood’ effect, which may be explained by the high incidence of bugs

classified with both failure types.

It is also interesting to observe that these failure types (‘why doesn’t

it’ and ‘looks fine to me’) are the most frequent in all the top 3 top level

categories (intent). The ‘thanks, but no, thanks’ failure appeared in the third

position in two categories, except for the the ‘strategies’ category, where the

‘I can do otherwise’ appears as third most frequent failure. This can be

interpreted as users searching for alternative strategies when their primary

strategy could not be achieved, both because she could not understand the

design (‘misunderstood’) or by having rejected it (‘declined’). The secondary

strategy also appears when the user expects an affordance that was not

provided (‘expected’ effect).

The map depicted in figure 5.14 provides an insightful overview of the

results obtained in the categorization of bug reports, in spite of showing only

the top 3 results inside each category. The domination of the ‘what do they

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 125

F
ig

u
re

5.
14

:
B

u
gs

p
er

te
m

p
la

te
co

m
p

on
en

t,
fa

il
u
re

,
eff

ec
t

an
d

C
D

N
(t

op
3)

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 126

know?’ category shows the relevance of taking into account the two types of

knowledge involved: 1) what users already know about other languages and

APIs, and how this knowledge affects their reception of designer’s message; 2)

what they (don’t) know about the API’s affordances and its domain, which

corresponds to what should be effectively encoded in API metacommunication.

The high incidence of the ‘strategies’ and ‘goals’ categories also reinforces

the importance of clearly communicating an API’s envisioned scenarios and

contexts of use, since they support users’ interpretation and decision making

process about adopting or not a certain API affordance, depending on its

compatibility with users’ goals and strategies.

Next chapter further discusses the results and findings presented in this

chapter, analyzing their implications from a broader perspective of the study

of API’s. It also describes the main contributions of this thesis with respect to

current knowledge in API design and evaluation, their implications, limitations

and future work.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

6
Final Discussions and Conclusion

This chapter concludes this thesis by providing a broader discussion of

the research findings detailed in chapter 5 with respect to their contributions

to scientific knowledge. It also discusses this research work’s limitations and

proposes future work to expand the possibilities of the current approach.

The chapter begins by discussing new insights about the case of the PHP

Curl API, introduced in chapter 1.

In addition, this chapter promotes a reflection about API metacommunic-

ation as an expansion of the current concept of behavioral contract, introducing

the notion of pragmatic contracts.

6.1
Revisiting the “most dangerous code in the world”

This section analyzes the communicative aspects involved in the example

introduced in chapter 1, using some of the concepts and tools presented in

chapter 5 and contributing to new insights about this case study.

Subsection 1.2.1 described a compelling example of problems that may

occur in the interpretation of a specific API’s meanings, based on the work

of Georgiev et al (21). This work refers to a number of security problems in

the use of SSL libraries which, according to the authors, are mostly due to

misinterpretations and misunderstandings of its parameters, options, return

values, and so on.

The main objective of revisiting this example is to provide a new

perspective of the same problem by reflecting on the API’s communicative

aspects and how they may influence its proper use by programmers. The basic

idea is to analyze this specific API in terms of the organization of the problem

space proposed in this thesis. However, this should not be taken as a claim that

the use of the conceptual tools proposed in this thesis would automatically

contribute to the creation of a ‘better’ or ‘more usable’ API. The conceptual

tools we propose are to be used ‘by people’, who are necessarily subject to

the contingencies of their work situation and also to their level of skill and

professional knowledge. In other words, we are not proposing (and we do not

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 128

believe it is possible) to take people out of the loop in API design. We will thus

show how our tools can promote a reflection on a concrete example of an API

that has known issues, in order to discuss how our approach can contribute

to greater awareness about the communicative aspects involved in the matter

and how they may potentially affect users’ interpretation of its meanings.

Georgiev’s example illustrated problems with the PHP Curl extension,

especially with respect to the options that dictate how the library checks

the authenticity of the remote peer of an SSL connection, through the veri-

fication of its digital certificate contents and its domain name. The options

that control this behavior are CURLOPT SSL VERIFYPEER and CURL-

OPT SSL VERIFYHOST. As a reminder of the previously introduced ex-

ample, listing 6.1 reproduces the same code shown in listing 1.1.

Listing 6.1: Example of insecure PHP Curl code

$ch = curl_init("https :// localhost");

curl_setopt($ch ,CURLOPT_SSL_VERIFYPEER , false);

if(curl_exec($ch)) echo "Request OK";

else echo "Error: ".curl_error($ch);

curl_close ();

This helps us to illustrate the discussion in subsection 5.3.1 about

APIs with a ‘narrow protocol’. This one has a generic interface (function

curl setopt()) that controls a large number of options for its behavior, including

the ones mentioned above. As it is usual with interfaces having numerous

options, the library provides default values for most of these options. Following

abductive reasoning, that is tightly associated with common practices and

even common sense (95), users frequently adopt the basic option settings that

they believe will allow them to accomplish their goal, sometimes without fully

understanding what is really happening.

For instance, option CURLOPT SSL VERIFYPEER controls if the

peer’s digital certificate will be checked or not, a procedure that verifies the

validity and authenticity of the remote host. Its default value used to be ‘false’

in older versions of the Curl library, which means that the default behavior was

insecure, but usually worked ‘out of the box’. However, it was not suited for

production use, due to its insecurity. After its default value changed (CURL-

OPT SSL VERIFYPEER=‘true’), users commonly faced problems using the

API to connect to SSL servers that used a self-signed certificate, since the

library refuses to connect to a host when it cannot verify its identity through

a trusted certificate (a self-signed certificate is a free alternative to the use

of certificates generated by third-party certification authorities). The ‘quick

solution’ to this problem is to turn off the security check (exactly what code

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 129

in listing 6.1 does). This ‘solution’ can be easily found in code samples from

the Internet, as it spread almost like a ‘pattern’ in the use of this library to

establish SSL connections in PHP applications.

The API documentation is organized as a reference for each function,

its description, parameters and return semantics. It does not provide common

scenarios of use to illustrate examples to accomplish a recurrent goal (see 5.3.6).

Despite the existence of many widely used APIs which provide only reference

documentation of its features, code samples contribute to illustrate common

scenarios and offer an authoritative view of recommended and intended use

cases, preventing the informal construction of inappropriate ‘idioms’ by a

community of users. In the PHP API, the documentation pages allow users

to post comments, and it is not uncommon to find bad examples of code

among these comments, which may sometimes be viewed by unexperienced

PHP programmers as a recommended code sample.

The library options CURLOPT SSL VERIFYHOST and CURL-

OPT SSL VERIFYPEER can be regarded as examples of problematic choices

of identifiers, for various reasons. The difference in meaning between ‘verify

host’ and ‘verify peer’ may not be clear to programmers, either to the ones

who write code or to those who read it later. Using the metacommunication

elements terminology, the naming strategy (expression) chosen by designers is

ambiguous and can be regarded as a bad choice of metaphors that may affect

users’ interpretation negatively. There can also be common ground issues

related to the required knowledge about specific SSL details. The cognitive

impact of this representation may be described in terms of the ‘role express-

iveness’ and ‘abstraction level’ dimensions, since these terms may be easily

mistaken, and probably carry abstractions that are not suited to most users’

goals.

Many option names in the Curl library that follow the pattern ‘verb

+ object ’ have boolean semantics, and consistency is broken in the case of

‘CURLOPT SSL VERIFYHOST’, since it takes ‘0’, ‘1’ or ‘2’ as possible values.

If a programmer’s abductive reasoning leads to the assumption of boolean

semantics for this option (based on an expected consistency of API’s elements),

she may set this option with a ‘true’ value, interpreting that ‘verify host =

true’ is the most secure option. However, due to PHP’s lenient conversion

between types, the parameter’s boolean value ‘true’ is automatically converted

to integer value ‘1’ when used in an numerical context. Since ‘2’ is the most

secure option value (meaning full host name verification), the result is a less

strict verification of host identity, which is not probably what users would like

to achieve.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 130

Considering the average profile of PHP users and their knowledge about

SSL specifics (‘who are the users?’, ‘what do they know?’), a finer-grain control

over SSL checks may be a useful feature to advanced users, but it is quite

reasonable to think that average PHP programmers just want to achieve their

goal of establishing an SSL connection (‘what do they need or want to do?’)

as quick and easily as possible (‘in which preferred ways?’), in order to obtain

a trusted and secure connection in their application (‘why?’).

The PHP Curl API metacommunication message has the potential to

cause the ‘misunderstood’ effect on users when they write (or read) code like

listing 6.1 and assume that it has an acceptable level of security. This would

typically be tagged as a ‘looks fine to me’ failure: the user is unaware that her

goal was not fully achieved.

Concerning the intent behind the API, the metacommunication template

has the potential to make designers aware of the design space components

that should be taken into account, helping to prevent the mismatch between

the API’s affordances and users’ goals and needs. Also, designers can refer to

the metacommunication elements organized in the dimensions of expression,

content and intent, reflecting on the use of these elements and on the attributes

that affect their quality. For instance, reflecting on the ambiguity and the

metaphorical use of identifiers in the Curl API could prevent the poor choice

of identifiers explained earlier in this section.

Additionally, the PHP Curl API has a particular characteristic that can

also be analyzed from a communicative perspective: it is an implementation

of a thin layer on top of the C Curl library 1, a widely used C library for

multiprotocol file transfer. Again, the metacommunication template has the

potential to make designers aware of their intent when creating a library to a

large audience: do ‘regular’ PHP programmers have the same knowledge, needs,

preferences and goals than C programmers ? Does a simple ‘translation’ of a

C library to PHP generate an adequate abstraction for the intended audience?

What differences between these two languages may affect the result of this

library ‘translation’ ? Do PHP programmers have to know any details of the

underlying C library to effectively use the PHP version of the library ?

In conclusion, this discussion about the PHP Curl API is not meant

to make claims about ‘what should have been done’ or ‘what would have

worked’, but rather provide a shift of perspective to shed new light over a class

of problems that are still a source of difficulties to programmers of all levels of

expertise and background knowledge.

1http://curl.haxx.se/libcurl/

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 131

6.2
Metacommunication as a ‘pragmatic contract’

This section extends the current notion of software contracts, introducing

a new abstraction that encompasses the main implications that derive from

viewing APIs as a communication process between its designers and users.

Software contracts, also known as ‘design by contract’ or ‘contract

programming’, describe a concept introduced by Bertrand Meyer (96) that

promotes an analogy between software interfaces and legal contracts, in

which both parties have duties and rights. A software contract is based on

logical assertions describing program state that should be valid before the call

(preconditions) and after the operation has been performed (postconditions).

If client users satisfy the preconditions (their ‘duty’), they have the ‘right’ to

assume that postconditions will be validated. Conversely, the software provider

has the ‘right’ to assume that users are compliant with the preconditions, but

has the ‘obligation’ to conform to the postconditions contracted.

The Eiffel programming language2 was one of the first to provide built-in

support for contract programming, allowing the specification of pre and post-

conditions, as well as invariants, enforcing these assertions at runtime to check

program consistency. A precondition violation usually means a problem in the

API caller, as opposed to a postcondition violation, interpreted as a defect

in the callee. Besides Eiffel, only a few languages support contracts natively,

e.g. Spec#3. However, there are several implementations of contract libraries

for a number of languages. For instance, the Java Modeling Language (JML)4

provides formal specification of Java interfaces, and the Code Contracts lib-

rary5 extends the C# language.

Beugnard et al. (97) proposed a classification of contracts for software

components in four levels: syntactic, behavioral, synchronization and quality

of service. According to the authors, these levels correspond to an increasing

ability to dynamically negotiate each level’s features. Level 1 starts with basic

syntactic features (nonnegotiable), going up to the quantitative properties

of quality of service features in level 4 (dynamically negotiable). Table 6.1

summarizes the contract levels and their meaning.

As illustrated above, the usual notion of contract promoted by Meyer

and others corresponds to level 2 in the classification, which accounts for the

semantic specification of the behavior of a software component or object. Level

1 corresponds to the basic requirements that should be satisfied to call an

2https://www.eiffel.com/
3http://research.microsoft.com/en-us/projects/specsharp/
4http://www.jmlspecs.org
5http://research.microsoft.com/en-us/projects/contracts/

https://www.eiffel.com/
http://research.microsoft.com/en-us/projects/specsharp/
http://www.jmlspecs.org
http://research.microsoft.com/en-us/projects/contracts/
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 132

Contract level Description

Level 1: Syntactic specification of an operation’s syntax, parameters and re-
turned values (interface definition languages and usual pro-
gramming languages)

Level 2: Behavioral specification of pre and postconditions and invariants (Eif-
fel, OCL)

Level 3: Synchronization specification of synchronization conditions under concur-
rency (mutex, path expression)

Level 4: Quality of service specification of efficiency-related parameters (response
time, precision, throughput)

Table 6.1: Classification of contract levels

operation - use the proper syntax. Level 3 specifies the concurrency conditions

that should be met to guarantee the operation’s consistency, while level 4 is

associated with efficiency aspects.

The ‘traditional’ concept of software contract (level 2 - behavioral)

has been the object of many research studies since the 1990’s (98) as a

mechanism to serve a twofold purpose. First, it provides a formal specification

of software behavior that can be enforced at runtime (and statically checked

in some cases), contributing to its robustness and correctness. Second, it

serves as documentation of an API’s semantics, at least in terms of a partial

specification of program state before and after an operation is carried out.

The formal nature of contract languages offers the advantage that it allows for

its automatic verification by the program runtime or the compiler. However,

it limits the contracts’ expressiveness and usability, since it is very difficult

to specify complex conditions using a formal language, sometimes even more

complex than the API implementation itself, which may be one of the factors

that limited the widespread use of behavioral contracts. In addition, it is

unfeasible to specify formally all the conditions, abilities, assumptions, modes

and circumstances that surround the designer’s intent encoded in a software

artifact.

Viewing APIs as designer-to-user metacommunication allows us to inter-

pret this communication process as a ‘pragmatic contract’ between designer

and user, extending the concept of behavioral specification to a more abstract

encoding of the intent behind the software artifact, as paraphrased in the

metacommunication template. This perspective provides an analogy with the

usual concept of contracts that describes an agreement between people, as op-

posed to the notion of a contract between pieces of code (caller and callee).

This analogy provides a type of contract which should be reflected in designers’

metacommunication to convey their design vision to users: who are their inten-

ded interlocutors, what are their goals, preferences, needs, motivations, and so

on. By specifying the ‘pragmatic contract’ behind the design of APIs, software

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 133

producers may contribute to prevent communicability issues from happening.

Underspecification of software artifacts’ intent aspects and their misinterpret-

ation are common sources of breakdowns to API users, as evidenced by the

results of the empirical studies detailed in chapter 5.

Figure 6.1 illustrates the interpretation of preconditions of a pragmatic

contract as the specification of intent, and postconditions as the possible out-

comes of satisfying (or not) the preconditions. Preconditions can be inter-

preted as the specification of intent behind the design of an API: the ‘au-

thorized’ users, goals, strategies, and so on. They summarize the designers’

‘rights’, which means that what falls outside this specification does not im-

ply an ‘obligation’ from the API designer’s side, which are described by the

postconditions.

Intent Preconditions Postconditions

who are the users?

Specification of users' required knowledge

about domain, and programming

language, as well as programming

expertise and experience with other

languages and APIs.

Conformance to standards and

conventions, rationale for design decisions.

Users should be able to evaluate if they are

potential interlocutors for API

metacommunication, and identify any gaps

between the intendend audience and their

profile.

Non-conformance with these requirements

should spare the designer from communicability

issues.

what do they need or

want to do?

Envisioned scenarios for the API and

associated boundary conditions

API should support goals which are consistent

with the intended scenarios and conditions.

Issues belonging to extraneous use cases scope

should be evaluated, possibly providing feedback

to designers.

In which preferred ways?
Specification of intended strategies and

styles, explicit illustrated through examples

and tutorials, consistent with scenarios

Recommended strategies should be readily

available to users, shortening their abductive

path to a consistent intepretation.

Other strategies should be adopted at users' own

risk.

why? Intended motivations and limitations

Users with incompatible motivations and

limitations may not qualify as 'authorized' users,

and should be able to clearly identify this

condition.

Figure 6.1: Intent as a pragmatic contract

Regarding the preconditions illustrated in figure 6.1, envisioned scenarios

and examples of ‘authorized’ API use should not be taken as restrictions to

limit unforeseen use cases of the API. Conversely, a good API usually promotes

‘unpredicted’ combinations of its features, since attributes like orthogonality

and flexibility allow these combinations. Therefore, the goal of examples is to

illustrate the API’s main use cases, uncovering common application scenarios

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 134

and communicating to its users the designer’s intent behind the artifact, or at

least part of it.

Still concerning the analogy of metacommunication as a pragmatic

contract, we can also describe its expected effects in terms of speech act theory

(see 3.1.5). There are two classes of speech acts that help to characterize the

contract conditions: ‘directive’ and ‘commissive’ acts. Directive speech acts aim

at causing the hearer to do something, and commissive speech acts commit

the speaker to taking some particular course of action in the future. Therefore,

preconditions may be viewed as a directive speech act: it tells the ‘hearer’ (user)

what to do in order to be eligible to use the artifact’s features; conversely, as

long as the user conforms to the intent specification, the ‘speaker’ (designer) is

committed to deliver API features consistently with its pragmatic specification.

The ‘directive’ analogy may also be interpreted in the sense that the

interface itself is a ‘designer-to-user directive’, which tells the user to ‘do like

this to use it’. This creates the reverse concept of ‘user-to-API directive’: by

setting API parameters and calling its operations, user ‘directs’ the ‘designer’s

deputy’ to act as determined. As such, the API, as the designer’s deputy, has

to satisfy its part of the contract at runtime, and the user has to commit to the

contract by using only valid ‘directives’. Therefore, API use may be viewed as

a ‘commissive act’ from users, even if they are not aware of it. This perspective

illustrates the inherent complexities of this form of communication.

In conclusion, the basic idea behind this analogy of a pragmatic contract

is to call the attention to a relevant aspect of API usage that is commonly

underspecified: its intent dimension, which is mostly composed by tacit know-

ledge that frequently goes unnoticed or missed in software specification and

use. By promoting this reflection, the goal is to highlight the fact that there

is more to the mutual understanding between API producers and consumers

than normally specified in the artifact’s design.

6.3
Contributions

This section summarizes the main contributions of this research as a

scientific work. Contributions are discussed with respect to API evaluation,

API design, and Semiotic Engineering.

As previously mentioned in chapter 1, APIs play a key role in the current

scenario of Software Engineering. However, the investigation, practical use and

professional teaching of APIs has a tradition of focusing on language and

programming aspects, not considering the API users’ needs, goals, abilities

and contextual differences as first-class objects of study. Evidence collected

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 135

and analyzed in this research contributes to illustrate potential consequences of

leaving these aspects out of scope when discussing API design and evaluation.

The communicative approach introduced in this thesis contributes to the

study of APIs with a shift of perspective that takes it into a novel context.

An immediate consequence of adopting the theoretical guidance of Semiotic

Engineering is to include the designer in the ontology supporting this type

of study. Framing API investigation as a communication process between

designers and users provides new insights and deeper comprehension of a

‘known problem’ through the reinterpretation of its various circumstances,

including some frequently missed ones.

The approach introduced in this thesis is inspired by an HCI view

of programmers as users of APIs, which are intellectual artifacts encoded

in a linguistic form and carrying a wide range of meanings, making its

production and use a complex human activity. In order to analyze human

aspects surrounding this phenomenon, this research has applied HCI concepts

and methods to investigate programmers’ experiences and difficulties with

APIs, in particular Java and PHP APIs. These difficulties have been mapped

and translated from bug reports that potentially reveal communicative issues

by being labeled as ‘not an issue’. When arguing against a presumed ‘bug’, API

designers (or evaluators, playing the role of designers) express the intent behind

the construction of the software artifact, revealing frequently overlooked and

unnoticed aspects of API metacommunication.

The proposed approach consisted of a systematic collection and analysis

of communicative and cognitive aspects contained in a sample of bug reports se-

lected from a large dataset. One of the consequences of this approach is the con-

clusion that there is more to the study of APIs than the current ‘code-oriented’

view of the subject, since framing this problem as human communication adds

new facets to its investigation. This reinforces the relevance of a ‘holistic’ view

of APIs, comprehending its specification in formal languages, documentation,

tutorials, examples, scenarios, runtime behavior, error conditions, limitations,

and so on, in a coordinated articulation of static, dynamic and metalinguistic

signs. A consistent ‘discourse’ in terms of metacommunication elements may

contribute to reduce the communicative and cognitive impact on eligible API

users, providing a more productive and effective programming experience.

6.3.1
Contributions to API evaluation and design

As explained in chapter 5, the iterative nature of the research resulted

in the gradual construction of a conceptual framework based on semiotic and

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 136

cognitive theories. This framework has been used to analyze the bug reports

selected as empirical evidence of communicative issues in APIs, contributing

to representative findings described in section 5.3.

The goal of the studies performed was not to find all classes of problems

that occur involving Java and PHP APIs, but rather to identify and explain

new perspectives on some representative issues. Even with respect to well

known issues, their analysis from a different standpoint provides a novel

diagnostic that enriches their discussion and increases designers’ awareness

about possible outcomes of certain decisions.

In the current state of the research development, there is no evidence to

ensure that the evaluation framework could be used ‘as-is’ in the analysis of

all kinds of APIs. It is quite reasonable to expect that the proposed approach

would provide useful results if applied to APIs with similar characteristics and

belonging to the same programming paradigms as the APIs studied in this

research. However, more research work is needed to confirm the suitability of

using the conceptual tools introduced to evaluate other sorts of APIs, and

should be addressed by future work.

The conceptual framework to analyze APIs frames the object of study as

human communication mediated by software, in accordance with Semiotic En-

gineering. This theory views every interactive software interface as a message

from its producers to its consumers, conveying the producers’ vision about

consumers, among other things. Therefore, part of the results obtained in this

research work are also entitled to inform API design.

However, in the current state of the research we cannot determine

precisely the quantity, quality, relevance and mode of the results’ influence

on API designers to improve the process of API construction and its products.

The potential benefits of applying the proposed conceptual framework

as an epistemic tool for API designers are quite plausible, but still lacks

verification. This conjecture is supported by de Souza’s description of an

epistemic tool in (22), p.33: “An epistemic tool is one that is not used to

yield directly the answer to the problem, but to increase the problem-solver’s

understanding of the problem itself and the implications it brings about. (...)

epistemic design tools are those that will not necessarily address the problem

solution, but the problem’s space and nature, and the constraints on candidate

solutions for it”.

Therefore, the epistemic nature of the results of this research may help

API designers to develop different perspectives on their object of study. In

addition, viewing design intent as a first-class object of study provides new

awareness to API producers about the organization of the design space and

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 137

about their own role in the process of software construction. In this context,

a communication perspective provides a proper ontology and vocabulary to

reason about intent in API design, as shown in chapter 5.

In addition, a communicative approach to the API design problem

allows us to characterize it as an effort from designers to find a balance

in their communication with two simultaneous interlocutors: the mechanical

(computer) and the human (API user). This thesis addresses only the human

interlocutor’s requirements in the context of API design, and results show that

non-conformance with these conditions may affect negatively this interlocutor’s

reception of the designer’s message.

It is a generally observed principle that when a design prioritizes the

computer’s performance requirements, the ‘human interlocutor’ efficiency may

be hindered, and vice-versa. This trade-off in the attempt to satisfy both in-

terlocutors optimality criteria is usually a non-trivial challenge, and a difficult

question is to determine which of them should be served with higher priority.

In order to effectively support the simultaneous requirements of the mechan-

ical and human interlocutors, there is a need to find methods to measure and

compare the costs and benefits associated with each interlocutor. This com-

parability criteria between these interlocutor’s needs has yet to be uncovered.

The mechanical interlocutor’s optimality criteria is usually characterized

in terms of algorithmic efficiency, while the human interlocutor needs to be

supported by criteria that encompass her cognitive and semiotic abilities and

limitations. Other types of criteria may apply to both cases, but these are

probably the most commonly used.

The differences between these interlocutors’ requirements can be illus-

trated in terms of the theoretical foundations of computing. Algorithmic effi-

ciency can be expressed by symbolic processing and manipulation represented

by formal languages and finite automata. The optimization of state machines

usually involves eliminating redundant and unnecessary states, whose primary

function was to support human cognition. The optimized symbolic representa-

tion is frequently different from an equivalent human-generated structure, and

this is a recurrent situation in different levels of abstraction in computing.

Peircean semiotic theory (76), which provided the foundations for the

development of Semiotic Engineering, states that the relation between the

components of a sign and its interpreter are determined by a process called

semiosis, which establishes the meanings of a sign in its interpreter’s ‘mind’.

In the case of a human interpreter, the boundaries of this process cannot be

predicted deterministically because it is impossible do know exactly when or

why someone will stop or resume inferencing about a particular sign. The inter-

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 138

pretation may proceed indefinitely, in theory, and this is known as ‘unlimited

semiosis’. In practice, meaning is achieved by the influence of educational and

cultural aspects that may stabilize this process when a plausible hypothesis

is formulated (‘abductive reasoning’ – see 3.1.2). Regarding the ‘mechanical

mind’, its semiosic process is bounded and deterministic, since it is defined by

deductive reasoning based on pre-established rules. Despite these differences,

Peircean theory does not restrict the type of ‘mind’ to which it applies, be

it natural or artificial. Therefore, a semiotic characterization of these inter-

locutors’ abilities and requirements has the potential to provide comparability

criteria between these apparently irreconcilable ‘minds’.

This thesis provides an initial approach to study the human interlocutor’s

optimality criteria, but does not address the perspective of the mechanical

interlocutor. Despite this limitation, the need for this comparability and the

conjecture of a semiotic approach to the problem is a theoretical result from

this study, which requires further research to investigate its feasibility and

implications, a topic for future work.

6.3.2
Contributions to Semiotic Engineering

The theoretical guidance of Semiotic Engineering permeated all stages

of this research work, providing conceptual, ontological, methodological and

epistemic support. However, Semiotic Engineering research methods have

been initially designed to analyze interactive visual interfaces. Therefore, the

methods and the framework used in this research derive from the adaptation

and combination of Semiotic Engineering methods’ concepts and tools to

the context of API evaluation and design. This adaptation provided novel

interpretations to these concepts and tools, as well as new insights about their

applicability. For this reason, the analytical procedures introduced in this thesis

can be regarded as a secondary contribution of the research.

In addition, this research amplifies the scope to which the Semiotic En-

gineering theory can be applied, since it has been traditionally used in HCI con-

texts. The results detailed in chapter 5 demonstrate that the theory provided

solid support to the study of APIs as human communication mediated by soft-

ware. Despite the adaptations previously mentioned, no major impedance has

been identified between the theory’s elements and its new context of applica-

tion’s requirements.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 139

6.4
Limitations

In addition to the limitations described in previous sections, the fact

that the studies in this research involved only APIs from two programming

languages is a limitation in the scope of the approach. However, as oriented by

the research question, the main goal was to comprehend how communicative

and cognitive aspects of APIs influence the use and interpretation of their

meanings. This was the first research work to provide this perspective on APIs,

to the best of our knowledge. As such, it called for a qualitative approach with

a deep and focused analysis of the object of study, in order to unveil its main

aspects and also to shape the conceptual tools used in this investigation. For

these reasons, the scope has been limited to only two programming languages.

As previously mentioned, the lack of validation of the research results

as an epistemic tool to inform API design is also an important limitation

of the thesis. However, this type of validation would involve activities that

comprehend at least the following steps: 1) to construct an API with a

minimum complexity and usefulness; 2) to carry out a systematic evaluation

of its design and implementation; 3) to evaluate its effectiveness in a realistic

setting; 4) to contrast its results with a ‘control’ API, constructed without the

orientation provided by the framework. Due to the effort needed to implement

the research for this validation, it was out of the scope of this thesis, and is

the subject of future work.

The results from the API studies described in this thesis, due to their

qualitative nature, are inherently descriptive and non-predictive. As such, these

results do not provide heuristics, guidelines or general rules for API design,

which may be taken as a limitation of the research work. However, these

results provide a detailed account of what happens with respect to API use in

practice. These findings provide the basis for the formulation of novel research

questions and hypothesis, to be further investigated by quantitative methods

and possibly generate predictive results for what will (or will not) happen.

6.5
Future work

The current research approach derives from studies involving issues from

the Java and PHP APIs. As such, it should be expanded to other types of APIs,

domains, programming languages and paradigms, in order to better determine

its suitability to these different contexts. This type of study may also provide

new insights and results to be incorporated in the framework.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 140

This thesis’ results can be used to revisit the object of study from

related work on API usability, as an exercise to provide new perspectives to

the knowledge acquired in these studies. This is an interesting type of study

to perform, as it has the potential to further develop the conceptual tools

proposed in this work, and also provide new findings on top of the original

study’s results.

As mentioned earlier in this chapter, there is a need to perform detailed

studies to determine precisely if and how well the epistemic framework may

inform API design. This would involve the systematic development and evalu-

ation of APIs in production environments and real software projects, in order

to effectively account for the benefits of the epistemic tools. A possible exten-

sion of this work would be the creation of metrics to quantify the improvement

(or not) of the resulting APIs.

The empirical studies we carried out involved the selection of bug reports

from a database of thousands of elements. In many cases, the discarded bug

report consisted in our judgment of issues that clearly revealed the user’s lack

of knowledge in programming concepts or some other computer science topic.

Despite the large number of bug reports discarded in this condition, many of

these bugs may be useful to help in the investigation of educational issues,

since there is a significant recurrence of some types of basic knowledge issues

in the reports. For instance, results from the analysis of bug reports indicate

issues related to floating point representation and other programming concepts

like references, object mutability and concurrency.

Due to the current state of the research results and the need to validate

precisely how it informs API design, the conceptual framework needs further

refinement to enable its effective use in a more technical context, as opposed to

its scientific use. This also motivates the development of evaluation methods

based on the communicative approach to be used by technical specialists.

6.6
Final considerations

The characterization of an API as a ‘shortcut’ is a good metaphor to

describe the fact that it enables programmers to have a ‘quick access’ to

different types of abstractions and services that shortens their path to an

existing goal, at least in the successful case.

API producers’ motivations and objectives may vary greatly. Many

programmers simply write API’s and programs to themselves, and this is a

perfectly valid use of APIs (99). Still, the communicative approach to APIs

holds even in this peculiar application of the intent dimension, in a trivial

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 141

instantiation of the metacommunication template: “I know exactly who you

are, and also your wants and needs.”

However, technology producers in enterprise or academic settings that

envision a wide adoption of their APIs and other software artifacts have a more

complex problem to deal with. If their motivation includes a more effective

programming experience, communicability should be a concern in the design

of these artifacts.

This thesis does not intend to be prescriptive about what should be done

with respect to API design. Rather, it provides a novel perspective on a com-

plex problem which permeates software development. This approach highlights

the fact that the use of APIs involves a ‘conversation’ between (at least) two

people with potentially different cultures, experiences, education, values, needs

(designer included). As such, to effectively address these differences, a commu-

nicative approach has the potential to bring the pragmatic aspects of software

development to this discussion. This shift in perspective is a contribution from

this research, since it allows us to view things in different ways from which they

were perceived before. For this reason, a new view on API programming has

the potential to contribute to advance current knowledge in relevant directions.

The conceptual framework that results from this research increases designers’

awareness of the need to reconcile multiple interlocutors’ perspectives of an

API. It also provides epistemic support for the design activity by offering an

organization of the design space and the relations among its components.

In conclusion, this chapter ends by quoting three excerpts (dated, but

still relevant) from renowned computer scientists, in which they expose their

positions about some human aspects of programming, much in the same spirit

as the motivation for this research work.

“The most obvious failing of traditional notations (...) is that too little

attention is paid to readability. It is sometimes brusquely asserted that ‘real

programmers’ can get used to anything, given a little ‘syntactic sugar’, and

that worrying about readability is namby-pamby stuff. It is indeed true that

some programmers can cope with very demanding notations, and it is also true

that some chess grandmasters can play twenty games blindfold simultaneously.

A conscious design decision to cater only for such prodigies could not be faulted,

but it would be stupid for a notation designer to ignore readability in a notation

designed for widespread acceptance.” (Thomas Green, ‘Cognitive Dimensions

of Notations’ (27))

“Let us change our traditional attitude to the construction of programs.

Instead of imagining that our main task is to instruct a computer what to

do, let us concentrate rather on explaining to human beings what we want a

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 142

computer to do.” (Donald Knuth, ‘Literate Programming’ (100)).

“Perhaps our troubles with programming languages stem from the uni-

directionality of the communication. Only when the theoreticians turn to the

‘dialogue’ aspects of programming ‘language’ will they finally be forced to recog-

nize that they are not students of symbol manipulation, but of human behavior.”

(Gerald Weinberg, ‘The Psychology of Computer Programming’ (101))

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Bibliography

[1] KRAMER, J. Is abstraction the key to computing? Commun. ACM,

ACM, New York, NY, USA, v. 50, n. 4, p. 36–42, apr. 2007.

[2] WING, J. M. Computational thinking and thinking about computing.

Philosophical transactions. Series A, Mathematical, physical,

and engineering sciences, v. 366, n. 1881, p. 3717–3725, oct. 2008.

[3] HANENBERG, S. Faith, hope, and love: An essay on software science’s

neglect of human factors. In: Proceedings of the ACM Interna-

tional Conference on Object Oriented Programming Systems

Languages and Applications. New York, NY, USA: ACM, 2010.

(OOPSLA ’10), p. 933–946.

[4] SOUZA, C. R. B. de et al. Sometimes you need to see through walls: a

field study of application programming interfaces. In: Proceedings of

the 2004 ACM conference on Computer supported cooperative

work. New York, NY, USA: ACM, 2004. (CSCW ’04), p. 63–71.

[5] HENNING, M. The rise and fall of CORBA. Commun. ACM, ACM,

New York, NY, USA, v. 51, n. 8, p. 52–57, aug. 2008.

[6] HENNING, M. API design matters. Queue, ACM, New York, NY, USA,

v. 5, n. 4, p. 24–36, may 2007.

[7] BLOCH, J. How to design a good API and why it matters. In: Compan-

ion to the 21st ACM SIGPLAN symposium on Object-oriented

programming systems, languages, and applications. New York,

NY, USA: ACM, 2006. (OOPSLA ’06), p. 506–507.

[8] TULACH, J. Practical API Design: Confessions of a Java Frame-

work Architect. 1. ed. Berkely, CA, USA: Apress, 2008.

[9] CWALINA, K.; ABRAMS, B. Framework Design Guidelines: Con-

ventions, Idioms, and Patterns for Reusable .NET Libraries.

2nd. ed. [S.l.]: Addison-Wesley Professional, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 144

[10] IERUSALIMSCHY, R.; FIGUEIREDO, L. H. de; CELES, W. Passing

a language through the eye of a needle. Queue, ACM, New York, NY,

USA, v. 9, n. 5, p. 20:20–20:29, may 2011.

[11] MYERS, B.; KO, A. The past, present and future of programming in

HCI. Institute for Software Research, Carnegie Mellon University, 2009.

Available from Internet: <http://repository.cmu.edu/isr/782/>.

[12] ARNOLD, K. Programmers are people, too. Queue, ACM, New York,

NY, USA, v. 3, n. 5, p. 54–59, jun. 2005.

[13] DAUGHTRY, J. M. et al. API usability: Report on special interest group

at CHI. SIGSOFT Softw. Eng. Notes, ACM, New York, NY, USA,

v. 34, n. 4, p. 27–29, jul. 2009.

[14] CLARKE, S.; BECKER, C. Using the Cognitive Dimensions Framework

to evaluate the usability of a class library. In: PETRE, M.; BUDGEN,

B. (Ed.). Proc. Joint Conf. EASE & PPIG. Keele, UK: Keele

University, 2003. p. 359–366.

[15] STYLOS, J.; CLARKE, S. Usability implications of requiring parameters

in objects’ constructors. In: Proceedings of the 29th International

Conference on Software Engineering. Washington, DC, USA: IEEE

Computer Society, 2007. (ICSE ’07), p. 529–539.

[16] FAROOQ, U.; ZIRKLER, D. API peer reviews: a method for evaluating

usability of application programming interfaces. In: Proceedings of

the 2010 ACM conference on Computer supported cooperative

work. New York, NY, USA: ACM, 2010. (CSCW ’10), p. 207–210.

[17] ROBILLARD, M. P.; DELINE, R. A field study of API learning

obstacles. Empirical Software Engineering, Kluwer Academic Pub-

lishers, Hingham, MA, USA, v. 16, n. 6, p. 703–732, dec. 2011.

[18] DAHOTRE, A. et al. Using intelligent tutors to enhance student learning

of application programming interfaces. J. Comput. Sci. Coll., Consor-

tium for Computing Sciences in Colleges, USA, v. 27, n. 1, p. 195–201,

oct. 2011.

[19] GRILL, T.; POLACEK, O.; TSCHELIGI, M. Methods towards API us-

ability: A structural analysis of usability problem categories. In: WINCK-

LER, M.; FORBRIG, P.; BERNHAUPT, R. (Ed.). Human-Centered

Software Engineering. [S.l.]: Springer Berlin Heidelberg, 2012, (Lec-

ture Notes in Computer Science, v. 7623). p. 164–180.

http://repository.cmu.edu/isr/782/
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 145

[20] HOVEMEYER, D. H. Simple and effective static analysis to find

bugs. Thesis (PhD) — University of Maryland at College Park, College

Park, MD, USA, 2005.

[21] GEORGIEV, M. et al. The most dangerous code in the world: validating

SSL certificates in non-browser software. In: Proceedings of the 2012

ACM Conference on Computer and Communications Security.

New York, NY, USA: ACM, 2012. (CCS ’12), p. 38–49.

[22] SOUZA, C. S. D. The Semiotic Engineering of Human-Computer

Interaction. Cambridge, MA: The MIT Press, 2005.

[23] AFONSO, L.; CERQUEIRA, R.; SOUZA, C. de. Evaluating application

programming interfaces as communication artefacts. In: Proceedings

of the Psychology of Programming Interest Group Annual

Conference 2012 (PPIG’2012). London, UK: The Psychology of

Programming Interest Group, 2012. p. 151–162.

[24] FERREIRA, J. et al. Combining cognitive, semiotic and discourse ana-

lysis to explore the power of notations in visual programming. In: Pro-

ceedings of VL-HCC’2012 – IEEE Symposium on Visual Lan-

guages and Human-Centric Computing. Innsbruck, Austria: IEEE,

2012. p. 101–108.

[25] FERREIRA, J.; SOUZA, C. de; CERQUEIRA, R. Characterizing the

tool-notation-people triplet in software modeling tasks. In: Proceedings

of 13th Brazilian Symposium on Human Factors in Computer

Systems. Porto Alegre, RS: SBC, 2014. p. 31–40.

[26] SOUZA, C. D.; LEITÃO, C. Semiotic Engineering Methods for

Scientific Research in HCI. Princeton, NJ: Morgan and Claypool

Publishers, 2009.

[27] GREEN, T. R. G. Cognitive dimensions of notations. In: SUTCLIFFE,

A.; MACAULAY, L. (Ed.). People and Computers V. Cambridge,

UK: Cambridge University Press, 1989. p. 443–460.

[28] SHEIL, B. A. The psychological study of programming. ACM Comput.

Surv., ACM, New York, NY, USA, v. 13, n. 1, p. 101–120, mar. 1981.

[29] ROSSON, M. B.; CARROLL, J. M. The reuse of uses in smalltalk

programming. ACM Trans. Comput.-Hum. Interact., ACM, New

York, NY, USA, v. 3, n. 3, p. 219–253, sep. 1996.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 146

[30] MCLELLAN, S. G. et al. Building more usable APIs. IEEE Softw.,

IEEE Computer Society Press, Los Alamitos, CA, USA, v. 15, n. 3, p.

78–86, may 1998.

[31] SOLOWAY, E.; EHRLICH, K. Empirical studies of programming know-

ledge. Software Engineering, IEEE Transactions on, SE-10, n. 5,

p. 595–609, sep. 1984.

[32] CLARKE, S. Evaluating a new programming language. In: KADODA,

G. (Ed.). Proceedings of the 13th Workshop of the Psychology

of Programming Interest Group. Bournemouth, UK: Bournemouth

University, 2001. p. 275–289.

[33] CLARKE, S. Measuring API usability. Dr. Dobb’s Journal, v. 29,

p. S6–S9, 2004. Available from Internet: <http://www.drdobbs.com/

windows/measuring-api-usability/184405654>.

[34] CLARKE, S. Describing and measuring API usability with the

Cognitive Dimensions. In: Cognitive Dimensions of Notations

10th Anniversary Workshop. [s.n.], 2006. Available from Inter-

net: <http://www.cl.cam.ac.uk/~{}afb21/CognitiveDimensions/

workshop2005/index.html>.

[35] MAIA, R. et al. A qualitative human-centric evaluation of flexibility

in middleware implementations. Empirical Software Engineering,

Springer Netherlands, v. 17, p. 166–199, 2012.

[36] BORE, C.; BORE, S. Profiling software API usability for consumer

electronics. In: Consumer Electronics, 2005. ICCE. 2005 Digest of

Technical Papers. International Conference on. [S.l.: s.n.], 2005.

p. 155–156.

[37] RATIU, D.; JURJENS, J. Evaluating the reference and representation of

domain concepts in APIs. In: Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on. Amsterdam,

NL: IEEE, 2008. p. 242–247.

[38] WATSON, R. Improving software API usability through text analysis:

A case study. In: Professional Communication Conference, 2009.

IPCC 2009. IEEE International. Waikiki, HI: IEEE, 2009. p. 1–7.

[39] O’CALLAGHAN, P. The API walkthrough method: A lightweight

method for getting early feedback about an API. In: Evaluation and

http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.cl.cam.ac.uk/~{}afb21/CognitiveDimensions/workshop2005/index.html
http://www.cl.cam.ac.uk/~{}afb21/CognitiveDimensions/workshop2005/index.html
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 147

Usability of Programming Languages and Tools. New York, NY,

USA: ACM, 2010. (PLATEAU ’10), p. 5:1–5:6.

[40] GERKEN, J. et al. The concept maps method as a tool to evaluate

the usability of APIs. In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. New York, NY, USA:

ACM, 2011. (CHI ’11), p. 3373–3382.

[41] FAROOQ, U.; WELICKI, L.; ZIRKLER, D. API usability peer reviews:

A method for evaluating the usability of application programming in-

terfaces. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. New York, NY, USA: ACM, 2010.

(CHI ’10), p. 2327–2336.

[42] ELLIS, B.; STYLOS, J.; MYERS, B. The factory pattern in API design:

A usability evaluation. In: Proceedings of the 29th International

Conference on Software Engineering. Washington, DC, USA: IEEE

Computer Society, 2007. (ICSE ’07), p. 302–312.

[43] STYLOS, J.; MYERS, B. A. The implications of method placement on

API learnability. In: Proceedings of the 16th ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineer-

ing. New York, NY, USA: ACM, 2008. (SIGSOFT ’08/FSE-16), p. 105–

112.

[44] PICCIONI, M.; FURIA, C.; MEYER, B. An empirical study of API

usability. In: Empirical Software Engineering and Measurement,

2013 ACM / IEEE International Symposium on. Baltimore, MD:

IEEE, 2013. p. 5–14.

[45] SPIZA, S.; HANENBERG, S. Type names without static type checking

already improve the usability of APIs (as long as the type names are

correct): An empirical study. In: Proceedings of the 13th Interna-

tional Conference on Modularity. New York, NY, USA: ACM, 2014.

(MODULARITY ’14), p. 99–108.

[46] DOUCETTE, A. On API usability: An analysis and an evaluation tool.

CMPT816 - Software Engineering, Saskatoon, Saskatchewan,

Canada: University of Saskatchewan, Saskatchewan, Canada: Uni-

versity of Saskatchewan, 2008.

[47] SOUZA, C. de; BENTOLILA, D. Automatic evaluation of API usability

using complexity metrics and visualizations. In: Proceedings of the

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 148

31st International Conference on Software Engineering (ICSE

2009) – Companion Volume. Vancouver, BC: IEEE, 2009. p. 299–

302.

[48] SCHELLER, T.; KUHN, E. Measurable concepts for the usability of

software components. In: Software Engineering and Advanced Ap-

plications (SEAA), 2011 37th EUROMICRO Conference on.

[S.l.]: IEEE, 2011. p. 129–133.

[49] CATALDO, M. et al. The impact of interface complexity on failures:

An empirical analysis and implications for tool design. Technical Re-

port CMU-ISR-10-101, School of Computer Science, Carnegie

Mellon University, 2010.

[50] RAMA, G. M.; KAK, A. Some structural measures of API usability.

Software: Practice and Experience, John Wiley & Sons, Ltd., v. 45,

n. 1, p. 75–110, 2015.

[51] STYLOS, J.; MYERS, B. Mapping the space of API design decisions.

In: Proceedings of the IEEE Symposium on Visual Languages

and Human-Centric Computing. Washington, DC, USA: IEEE

Computer Society, 2007. (VLHCC ’07), p. 50–60.

[52] ZIBRAN, M.; EISHITA, F.; ROY, C. Useful, but usable? factors affecting

the usability of APIs. In: Reverse Engineering (WCRE), 2011 18th

Working Conference on. Limerick, Ireland: IEEE, 2011. p. 151 –155.

[53] MEYER, B. Lessons from the design of the Eiffel libraries. Commun.

ACM, ACM, New York, NY, USA, v. 33, n. 9, p. 68–88, sep. 1990.

[54] BLOCH, J. Effective Java (2nd Edition) (The Java Series). 2. ed.

Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008.

[55] ROBILLARD, M. P. What makes APIs hard to learn? answers from

developers. IEEE Softw., IEEE Computer Society Press, Los Alamitos,

CA, USA, v. 26, n. 6, p. 27–34, nov. 2009.

[56] HOU, D.; LI, L. Obstacles in using frameworks and APIs: An exploratory

study of programmers’ newsgroup discussions. In: Program Compre-

hension (ICPC), 2011 IEEE 19th International Conference on.

Kingston, ON: IEEE, 2011. p. 91–100.

[57] SILLITO, J.; MURPHY, G. C.; VOLDER, K. D. Asking and answering

questions during a programming change task. IEEE Trans. Softw.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 149

Eng., IEEE Press, Piscataway, NJ, USA, v. 34, n. 4, p. 434–451, jul.

2008.

[58] DUALA-EKOKO, E.; ROBILLARD, M. P. Asking and answering ques-

tions about unfamiliar APIs: An exploratory study. In: Proceedings

of the 34th International Conference on Software Engineering.

Piscataway, NJ, USA: IEEE Press, 2012. (ICSE ’12), p. 266–276.

[59] KUHN, A.; DELINE, R. On designing better tools for learning APIs.

In: Search-Driven Development - Users, Infrastructure, Tools

and Evaluation (SUITE), 2012 ICSE Workshop on. Zurich,

Switzerland: IEEE, 2012. p. 27–30.

[60] DEKEL, U.; HERBSLEB, J. D. Improving API documentation usability

with knowledge pushing. In: Proceedings of the 31st International

Conference on Software Engineering. Washington, DC, USA: IEEE

Computer Society, 2009. (ICSE ’09), p. 320–330.

[61] STYLOS, J. et al. Improving API documentation using API usage

information. In: Proceedings of the 2009 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC).

Washington, DC, USA: IEEE Computer Society, 2009. (VLHCC ’09), p.

119–126.

[62] KO, A.; RICHE, Y. The role of conceptual knowledge in API us-

ability. In: Visual Languages and Human-Centric Computing

(VL/HCC), 2011 IEEE Symposium on. Pittsburgh, PA: IEEE,

2011. p. 173–176.

[63] MONPERRUS, M. et al. What should developers be aware of? an

empirical study on the directives of API documentation. Empirical

Software Engineering, Kluwer Academic Publishers, Hingham, MA,

USA, v. 17, n. 6, p. 703–737, dec. 2012.

[64] MAALEJ, W.; ROBILLARD, M. Patterns of knowledge in API reference

documentation. Software Engineering, IEEE Transactions on,

v. 39, n. 9, p. 1264–1282, Sept 2013.

[65] ENDRIKAT, S. et al. How do API documentation and static typing

affect API usability? In: Proceedings of the 36th International

Conference on Software Engineering. New York, NY, USA: ACM,

2014. (ICSE 2014), p. 632–642.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 150

[66] BLACKWELL, A. F. Metaphors we Program By: Space, Action and

Society in Java. In: Proceedings of the 18th Psychology of Pro-

gramming Interest Group (PPIG 2006). Brighton, UK: University

of Sussex, 2006.

[67] DUBOCHET, G. Computer code as a medium for human communication

: Are programming languages improving ? Proceedings of the 21st

Psychology of Programming Workshop (PPIG 2009), University

of Limerick, Ireland, p. 174–187, 2009.

[68] ORCHARD, D. The four Rs of programming language design. In: Pro-

ceedings of the 10th SIGPLAN Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software. New

York, NY, USA: ACM, 2011. (ONWARD ’11), p. 157–162.

[69] ZEMANEK, H. Semiotics and programming languages. Commun.

ACM, ACM, New York, NY, USA, v. 9, n. 3, p. 139–143, mar. 1966.

[70] KAMTHAN, P. A framework for the pragmatic quality of Z specifica-

tions. International Journal of Software Engineering and Know-

ledge Engineering, v. 16, n. 5, p. 769–790, 2006.

[71] TANAKA-ISHII, K. Semiotics of Programming. 1st. ed. New York,

NY, USA: Cambridge University Press, 2010.

[72] SOUZA, C. R. de; REDMILES, D. On the roles of APIs in the co-

ordination of collaborative software development. Computer Suppor-

ted Cooperative Work (CSCW), Springer Netherlands, v. 18, n. 5-6,

p. 445–475, 2009.

[73] BURNS, C. et al. Usable results from the field of API usability: A system-

atic mapping and further analysis. In: Visual Languages and Human-

Centric Computing (VL/HCC), 2012 IEEE Symposium on.

Innsbruck, Austria: IEEE, 2012. p. 179–182.

[74] STEFIK, A. et al. What is the foundation of evidence of human factors

decisions in language design? an empirical study on programming lan-

guage workshops. In: Proceedings of the 22Nd International Con-

ference on Program Comprehension. New York, NY, USA: ACM,

2014. (ICPC 2014), p. 223–231.

[75] WURSTER, G.; OORSCHOT, P. C. van. The developer is the enemy. In:

Proceedings of the 2008 Workshop on New Security Paradigms.

New York, NY, USA: ACM, 2008. (NSPW ’08), p. 89–97.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 151

[76] PEIRCE, C. S. Collected Papers of Charles Sanders Peirce.

Cambridge, MA, USA: Harvard University Press, 1931–1958. (Collected

Papers of Charles Sanders Peirce).

[77] SAUSSURE, F. de. Cours de linguistique générale. Paris: Payot,

1972.

[78] JAKOBSON, R. Linguistics and Poetics. In: SEBEOK, T. A. (Ed.).

Style in Language. Cambridge, MA: The M.I.T. Press, 1960.

[79] AUSTIN, J. How to Do Things with Words. Cambridge, MA:

Harvard University Press, 1962.

[80] SEARLE, J. R. Speech Acts: An Essay in the Philosophy of

Language. Cambridge, London: Cambridge University Press, 1969.

[81] GRICE, H. P. Logic and conversation. In: COLE, P.; MORGAN, J. L.

(Ed.). Speech Acts. New York: Academic Press, 1975, (Syntax and

Semantics, v. 3). p. 41–58.

[82] PRATES, R. O.; SOUZA, C. S. de; BARBOSA, S. D. J. Methods and

tools: A method for evaluating the communicability of user interfaces.

interactions, ACM, New York, NY, USA, v. 7, n. 1, p. 31–38, jan. 2000.

[83] SOUZA, C. S. de et al. Can inspection methods generate valid new

knowledge in HCI? the case of semiotic inspection. Int. J. Hum.-

Comput. Stud., Academic Press, Inc., Duluth, MN, USA, v. 68, n. 1-2,

p. 22–40, jan. 2010.

[84] GREEN, T.; PETRE, M. Usability analysis of visual programming

environments: A ‘cognitive dimensions’ framework. Journal of Visual

Languages & Computing, v. 7, n. 2, p. 131 – 174, 1996.

[85] CHURCH, L.; GREEN, T. Cognitive Dimensions - a short tutorial.

In: Proceedings of 20th Psychology of Programming Interest

Group (PPIG 2008). Lancaster, UK: Lancaster University, 2008.

[86] PETRE, M. Cognitive dimensions ‘beyond the notation’. Journal of

Visual Languages & Computing, Elsevier, v. 17, n. 4, p. 292 – 301,

2006.

[87] CRESWELL, J. W. Research Design: Qualitative, Quantitative,

and Mixed Methods Approaches. 3. ed. [S.l.]: Sage Publications,

2009.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 152

[88] BRANDÃO, R. R. d. M. A Capture & Access technology to

support documentation and tracking of qualitative research

applied to HCI. Thesis (PhD) — Departamento de Informática, PUC-

Rio, 2015. Advisor: Clarisse Sieckenius de Souza.

[89] CARROLL, J. M.; ROSSON, M. B. Interfacing thought: Cognitive

aspects of human-computer interaction. In: CARROLL, J. M. (Ed.).

Cambridge, MA, USA: MIT Press, 1987. chapter Paradox of the Active

User, p. 80–111.

[90] SOUZA, C. S. de. Semiotics: and human-computer interac-

tion. In: SOEGAARD, M.; DAM, R. F. (Ed.). Encyclopedia

of Human-Computer Interaction. Aarhus, Denmark: The

Interaction-Design.org Foundation, 2012. Available from Internet:

<http://www.interaction-design.org/encyclopedia/semiotics_

and_human-computer_interaction.html>.

[91] MAGNANI, L. An abductive theory of scientific reasoning. Semiotica,

v. 153, p. 261–286, 2005.

[92] CLARKE, S. What is an End User Software Engineer? In: BURNETT,

M. H. et al. (Ed.). End-User Software Engineering. Dagstuhl, Ger-

many: Internationales Begegnungs- und Forschungszentrum für Inform-

atik (IBFI), Schloss Dagstuhl, Germany, 2007.

[93] GIBSON, J. J. The theory of affordances. In: SHAW, R.; BRANSFORD,

J. (Ed.). Perceiving, Acting, and Knowing: Toward an Ecological

Psychology. [S.l.]: Lawrence Erlbaum Associates, 1977. p. 67–82.

[94] NORMAN, D. A. The Design of Everyday Things. New York, NY,

USA: Basic Books, Inc., 2002.

[95] SANTAELLA, L. Abduction: The logic of guessing. Semiotica, De

Gruyter, v. 153, p. 175–198, 2005.

[96] MEYER, B. Applying design by contract. Computer, IEEE Computer

Society Press, Los Alamitos, CA, USA, v. 25, n. 10, p. 40–51, 1992.

[97] BEUGNARD, A. et al. Making components contract aware. Computer,

IEEE Computer Society Press, Los Alamitos, CA, USA, v. 32, n. 7, p.

38–45, jul. 1999.

http://www.interaction-design.org/encyclopedia/semiotics_and_human-computer_interaction.html
http://www.interaction-design.org/encyclopedia/semiotics_and_human-computer_interaction.html
DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

Communicative Dimensions of Application Programming Interfaces (APIs) 153

[98] AFONSO, L. M. Um Estudo Sobre Contratos em Sistemas de

Componentes de Software. Master’s thesis (Master) — Departa-

mento de Informática, PUC-Rio, sep. 2008. Advisor: Renato Fontoura

de G. Cerqueira.

[99] GABRIEL, R. P. I throw itching powder at tulips. In: Proceedings of

the 2014 ACM International Symposium on New Ideas, New

Paradigms, and Reflections on Programming & Software. New

York, NY, USA: ACM, 2014. (Onward! 2014), p. 301–319.

[100] KNUTH, D. E. Literate programming. The Computer Journal, v. 27,

n. 2, p. 97–111, 1984.

[101] WEINBERG, G. M. The Psychology of Computer Programming

(Silver Anniversary Ed.). New York, NY, USA: Dorset House Pub-

lishing Co., Inc., 1998.

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

DBD
PUC-Rio - Certificação Digital Nº 1012695/CA

	Communicative Dimensions of Application Programming Interfaces (APIs)
	Abstract
	Contents
	Introduction
	Context
	Motivation
	``The most dangerous code in the world''

	Research Goal
	Approach
	Results
	Outline

	Related Work
	API and Language Evaluation
	API and Language Design
	API learning and documentation
	Programming, Communication and Semiotics
	Other studies
	Considerations about related work

	Theoretical Foundations
	Semiotic Engineering
	Signs and semiosis
	Abductive reasoning
	Communication processes
	Software as an intellectual artifact
	Pragmatic concepts and principles
	Metacommunication
	Semiotic Engineering ontology
	Communicability
	Classification of signs
	Scientific methods
	Semiotic Engineering in the context of APIs

	Cognitive Dimensions of Notations framework
	List of dimensions
	Cognitive dimensions and APIs

	Methodology and Empirical Studies
	Research approach
	Research Design
	Empirical studies
	Phase 1 – Initial data collection, selection and analysis
	Phase 2 – Systematic classification and analysis
	Phase 3 – Refinement of classification and analysis
	Phase 4 – Final selection, analysis and consolidation of results

	Considerations about the research

	Analysis of Results and Findings
	Considerations about the `active programmer' and abductive reasoning
	Communicative dimensions and epistemic tools for API design and analysis
	Intent
	Effects
	Failures

	Qualitative findings
	Narrow protocol and default behavior
	Lenient behavior
	Implicit or ambiguous metacommunication
	Use of figurative speech: metaphors and metonymies
	Documentation as API metacommunication
	Envisioned scenarios
	Common ground
	Specific domain concepts
	Identity and comparison
	Classification of collected evidence

	Final Discussions and Conclusion
	Revisiting the ``most dangerous code in the world''
	Metacommunication as a `pragmatic contract'
	Contributions
	Contributions to API evaluation and design
	Contributions to Semiotic Engineering

	Limitations
	Future work
	Final considerations

